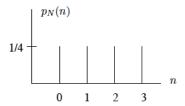
Solutions

- 1. (Numerical Methods)
- 2. (Numerical Methods)
- 3. (a) The first part can be completed without reference to anything other than the die roll:



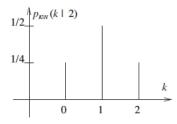
(b) When N=0, the coin is not flipped at all, so K=0. When N=n for $n \in \{1,2,3\}$, the coin is flipped n times, resulting in K with a distribution that is conditionally binomial. The binomial probabilities are all multiplied by 1/4 because $p_N(n)=1/4$ for $n \in \{0,1,2,3\}$. The joint PMF $p_{N,K}(n,k)$ thus takes the following values and is

		k = 0	k = 1	k = 2	k = 3
zero otherwise:		1/4			0
	n = 1	1/8	1/8	0	0
	n=2	1/16	1/8	1/16	0
	n = 3	1/32	3/32	3/32	1/32

(c) Conditional on ${\cal N}=2, {\cal K}$ is a binomial random variable. So we immediately see that

$$p_{K|N}(k \mid 2) = \begin{cases} 1/4, & \text{if } k = 0\\ 1/2, & \text{if } k = 1\\ 1/4, & \text{if } k = 2\\ 0, & \text{otherwise} \end{cases}$$

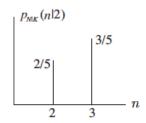
This is a normalized row of the table in the previous part.



(d) To get K=2 heads, there must have been at least 3 coin tosses, so only N=3 and N=4 have positive conditional probability given K=2.

$$p_{N|K}(2 \mid 2) = \frac{\mathbf{P}(\{N=2\} \cap \{K=2\})}{\mathbf{P}(\{K=2\})} = \frac{1/16}{1/16 + 1/32 + 1/32 + 1/32} = 2/5.$$

Similarly, $p_{N|K}(3 | 2) = 3/5$.



4. (a) Suppose we choose old widgets. Before we choose any widgets, there are $500 \cdot 0.15 = 75$ defective old widgets. The probability that we choose two defective widgets is

$$\mathbf{P}(\text{ two defective } | \text{ old }) = \mathbf{P}(\text{ 1st is defective } | \text{ old }) \cdot \mathbf{P}(\text{ 2nd is defective } | \text{ 1st is defective, old })$$

$$= \frac{75}{500} \frac{74}{499} = 0.02224$$

Now let's consider the new widgets. Before we choose any widgets, there are $1500 \cdot 0.05 = 75$ defective old widgets. Similar to the calculations above,

$$\begin{aligned} \mathbf{P} \text{ (two defective } | \text{ new}) &= \mathbf{P} \text{ (1st is defective } | \text{ new}) \cdot \mathbf{P} \text{ (2nd is defective } | \text{ 1st is defective, new)} \\ &= \frac{75}{1500} \frac{74}{1499} = 0.002568 \end{aligned}$$

By the total probability law,

$$\mathbf{P}(\text{ two defective }) = \mathbf{P}(\text{ old }) \cdot \mathbf{P}(\text{ two defective } | \text{ old }) \\ + \mathbf{P}(\text{ new }) \cdot \mathbf{P}(\text{ two defective } | \text{ new }) \\ = \frac{1}{2} \cdot 0.02224 + \frac{1}{2} \cdot 0.002568 = 0.01240$$

Note that this number is very close to what we would get if we ignored the effects of removing one defective widget before choosing the second widget:

$$\begin{aligned} \mathbf{P}(\text{ two defective }) &= \mathbf{P}(\text{ old }) \cdot \mathbf{P}(\text{ two defective } | \text{ old }) \\ &+ \mathbf{P}(\text{ new }) \cdot \mathbf{P}(\text{ two defective } | \text{ new }) \\ &\approx \frac{1}{2} \cdot 0.15^2 + \frac{1}{2} \cdot 0.05^2 = 0.0125 \end{aligned}$$

(b) Using Bayes' rule,

$$\mathbf{P}(\text{ old } | \text{ two defective }) = \frac{\mathbf{P}(\text{ old }) \cdot \mathbf{P}(\text{ two defective } | \text{ old })}{\mathbf{P}(\text{ old }) \cdot \mathbf{P}(\text{ two defective } | \text{ old }) + \mathbf{P}(\text{ new }) \cdot \mathbf{P}(\text{ two defective } | \text{ new })}$$

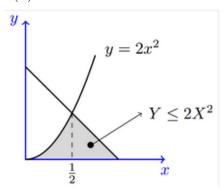
$$= \frac{\frac{1}{2} \cdot 0.02224}{\frac{1}{2} \cdot 0.02224 + \frac{1}{2} \cdot 0.002568} = 0.8965$$

5. 3(a) To find the constant c, we write

$$1 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{XY}(x, y) dx dy$$
$$= \int_{0}^{1} \int_{0}^{1-x} cx + 1 dy dx$$
$$= \int_{0}^{1} (cx + 1)(1 - x) dx$$
$$= \frac{1}{2} + \frac{1}{6}c$$

Thus, we conclude c = 3.

3(b)



To find $P(Y < 2X^2)$, we need to integrate $f_{XY}(x, y)$ over the region shown in Figure. We have

$$P(Y < 2X^{2}) = \int_{-\infty}^{\infty} \int_{-\infty}^{2x^{2}} f_{XY}(x, y) dy dx$$

$$= \int_{0}^{1} \int_{0}^{\min(2x^{2}, 1 - x)} 3x + 1 dy dx$$

$$= \int_{0}^{1} (3x + 1) \min(2x^{2}, 1 - x) dx$$

$$= \int_{0}^{\frac{1}{2}} 2x^{2} (3x + 1) dx + \int_{\frac{1}{2}}^{1} (3x + 1) (1 - x) dx$$

$$= \frac{53}{96}$$

- 6. (a) Assume that X and Y are independent. Because $p_{X,Y}(3,1) = 0$ and $p_Y(1) = 1/4, p_X(3)$ must equal zero. This further implies $p_{X,Y}(3,2) = 0$ and $p_{X,Y}(3,3) = 0$. All the remaining probability mass must go to (X,Y) = (2,2), making $p_{X,Y}(2,2) = 5/12, p_X(2) = 8/12$, and $p_Y(2) = 7/12$. However, $p_{X,Y}(2,2) \neq p_X(2) \cdot p_Y(2)$, contradicting the assumption; thus X and Y are not independent. A simpler explanation uses only two X values and two Y values for which all four (X,Y) pairs have specified probabilities. Note that if X and Y are independent, then $p_{X,Y}(1,3)/p_{X,Y}(1,1)$ and $p_{X,Y}(2,3)/p_{X,Y}(2,1)$ must be equal because they must both equal $p_Y(3)/p_Y(1)$. This necessary equality does not hold, so X and Y are not independent.
 - (b) Knowing that X and Y are conditionally independent given B, we must have

$$\frac{p_{X,Y}(1,1)}{p_{X,Y}(1,2)} = \frac{p_{X,Y}(2,1)}{p_{X,Y}(2,2)}$$

since the (X,Y) pairs in the equality are all in B. Thus

$$p_{X,Y}(2,2) = \frac{p_{X,Y}(1,2)p_{X,Y}(2,1)}{p_{X,Y}(1,1)} = \frac{(2/12)(2/12)}{1/12} = \frac{4}{12} = \frac{1}{3}$$

(c) Since $\mathbf{P}(B) = 9/12 = 3/4$, we normalize to obtain $p_{X,Y|B}(2,2) = \frac{p_{X,Y}(2,2)}{\mathbf{P}(B)} = 4/9$.

7. (a)

$$X \sim \mathrm{U}(0,1)$$
$$f_X(x) = 1$$

To find the distribution of $-2 \log X = Y$ (say) First of all let's settle out domain.

Taking log

$$-\infty < \log X \le 0$$

Multiplying -2 we have

$$0 \le -2\log X < \infty$$
$$0 \le Y < \infty$$

To find the distribution, we begin with Cumulative distribution function of Y

$$F_Y(y) = P(Y \le y) = P(-2\log X \le y) = P\left(\log X \ge \frac{y}{-2}\right)$$
$$= 1 - P\left(\log X < \frac{y}{-2}\right)$$
$$= 1 - P\left(X < e^{\frac{-y}{2}}\right)$$
$$= 1 - F_X\left(e^{\frac{-y}{2}}\right)$$

Taking the derivative of both sides with respect to variable y we have:

$$f_Y(y) = -f_X\left(e^{\frac{-y}{2}}\right)\left(e^{\frac{-y}{2}}\right)\left(\frac{-1}{2}\right)$$
$$f_Y(y) = \frac{1}{2}e^{\frac{-y}{2}} \quad y \in [0, \infty)$$

(b) Since $V(x) = E(x^2) - [E(x)]^2 = 1 - 1 = 0$, then the distribution X can only contain the value 1. Meaning, the entire probability is at one point (X = 1). So, P(X = 1) = 1 and everywhere else it is 0.

8. (a)

$$E(X) = \mu = 20$$
, so $\sigma = \sqrt{20} = 4.472$. Therefore, $P(\mu - 2\sigma < X < \mu + 2\sigma) = P(20 - 8.944 < X < 20 + 8.944) = $P(11.056 < X < 28.944) = P(X \le 28) - P(X \le 11) = F(28; 20) - F(11; 20) = .966 - .021 = .945$.$

- (b) The probability that 2 heads appear is $\frac{1}{4}$, that 2 tails (no heads) appear is $\frac{1}{4}$ and that 1 head appears is $\frac{1}{2}$. Thus the probability of winning Rs 200 is $\frac{1}{4}$, of winning Rs 100 is $\frac{1}{2}$, and of losing Rs 500 is $\frac{1}{4}$. Hence $E=200\cdot\frac{1}{4}+100\cdot\frac{1}{2}-500\cdot\frac{1}{4}=-\frac{1}{4}=-25$. That is, the expected value of the game is minus Rs 25, and so is unfavorable to the player.
- 9. (a) Let X represent the annual rainfall where X follows a normal distribution with a mean of 40 and a standard deviation of 4. To find P(X > 50), first compute the z-score. The z-score can be found as follows:

$$z = \frac{x - \mu}{\sigma}$$
$$= \frac{50 - 40}{4}$$
$$= 2.5$$

Now observe the following:

$$P(X > 50) = 1 - P(Z \le 2.5)$$

= 1 - 0.9937903
 ≈ 0.00621

Now to find the probability that in 2 of the next 4 years the rainfall will exceed 50 inches, use the binomial distribution where $\mathbf{p} = 0.00621$ and $\mathbf{q} = 1 - p$, let Y be a random variable that represents years where the rainfall exceeds 50 inches and has p = 0.00621.

Using the probability mass function for the binomial distribution, we get the following:

$$P(Y = 2) = {4 \choose 2} (p)^2 * (1 - p)^2$$

$$P(Y = 2) = {4 \choose 2} (0.00621)^2 * (1 - 0.00621)^2$$

$$\approx 0.00023$$

So the probability that in 2 of the next 4 years that the region will receive more than 50 inches of annual rainfall is approximately 0.00023.

(b) It is clear that a necessary and sufficient condition for the three segments to form a triangle is that the length of any one of the segments be less than the sum of the other two. Let x, y be the abscissas of the two points chosen at random. Then we must have either

$$0 < x < \frac{1}{2} < y < 1$$
 and $y - x < \frac{1}{2}$

or

$$0 < y < \frac{1}{2} < x < 1 \text{ and } x - y < \frac{1}{2}.$$

This is precisely the shaded area in the Figure (See class notes). It follows that the required probability is $\frac{1}{4}$.

10. (a) Here, note that

$$R_{XY} = G = \{(x, y) | x, y \in \mathbb{Z}, |x| + |y| \le 2\}.$$

Thus, the joint PMF is given by

$$P_{XY}(x,y) = \begin{cases} \frac{1}{13} & (x,y) \in G\\ 0 & \text{otherwise} \end{cases}$$

To find the marginal PMF of $X, P_X(i)$, we use Equation 5.1. Thus,

$$P_X(-2) = P_{XY}(-2,0) = \frac{1}{13}$$

$$P_X(-1) = P_{XY}(-1,-1) + P_{XY}(-1,0) + P_{XY}(-1,1) = \frac{3}{13}$$

$$P_X(0) = P_{XY}(0,-2) + P_{XY}(0,-1) + P_{XY}(0,0)$$

$$+ P_{XY}(0,1) + P_{XY}(0,2) = \frac{5}{13}$$

$$P_X(1) = P_{XY}(1,-1) + P_{XY}(1,0) + P_{XY}(1,-1) = \frac{3}{13}$$

$$P_X(2) = P_{XY}(2,0) = \frac{1}{13}$$

Similarly, we can find

$$P_Y(j) = \begin{cases} \frac{1}{13} & \text{for } j = 2, -2\\ \frac{3}{13} & \text{for } j = -1, 1\\ \frac{5}{13} & \text{for } j = 0\\ 0 & \text{otherwise} \end{cases}$$

We can write this in a more compact form as

$$P_X(k) = P_Y(k) = \frac{5 - 2|k|}{13}$$
, for $k = -2, -1, 0, 1, 2$.

(b) For i = -1, 0, 1, we can write

$$P_{X|Y}(i \mid 1) = \frac{P_{XY}(i, 1)}{P_Y(1)}$$
$$= \frac{\frac{1}{13}}{\frac{3}{13}} = \frac{1}{3}, \quad \text{for } i = -1, 0, 1$$

Thus, we conclude

$$P_{X|Y}(i \mid 1) = \begin{cases} \frac{1}{3} & \text{for } i = -1, 0, 1\\ 0 & \text{otherwise} \end{cases}$$

By looking at the above conditional PMF, we conclude that, given Y = 1, X is uniformly distributed over the set $\{-1, 0, 1\}$.

(c) X and Y are not independent. We can see this as the conditional PMF of X given Y = 1 (calculated above) is not the same as marginal PMF of X, $P_X(x)$.