
Solutions

1.

2.

3. (a) A subset Y of a metric space (X, d) is said to be dense inX if Ȳ = X, equivalently
if Y ∩ U ̸= ∅ for every nonempty open set U ⊂ X.

(b) A subset Y ⊂ Rn is nowhere dense in Rn if for any nonempty open set U ⊂ Rn,
there is a nonempty open set V ⊂ U such that V ∩ Y = ∅.
(c) A metric space X is said to be disconnected (or separated) if X = A ∪ B,
where A ̸= ϕ,B ̸= ϕ,A ∩ B = ϕ, and both A,B are open in X. In this case, A and B
is called separated sets of X. X is said to be connected if it is not disconnected.
Equivalently X is connected if it cannot be expressed as the union of two non-empty
separated sets.

(d) A metric space (X, d) is complete if every Cauchy sequence in X is convergent in
X.

(e) Let (X, d) be a metric space. A mapping T : X → X is a contraction mapping,
or contraction, if there exists a constant c (called a contraction constant), with
0 ≤ c < 1, such that d(T (x), T (y)) ≤ cd(x, y) for all x, y ∈ X.

(f) Let (X, d) be a metric space and A ⊂ X. We say that A is compact if every open
cover U of A in X has a finite subcover, i.e., if U = {Uj : j ∈ J} is a collection of open
subsets of X with A ⊂

⋃
j∈J Uj, then there is a finite subcollection {Ujk : 1 ≤ k ≤ p}

of U such that A ⊂
⋃p

k=1 Ujk .

(g) Let α be a monotonically increasing function on [a, b] (since α(a) and α(b) are
finite, it follows that α is bounded on [a, b]). Corresponding to each partition P of
[a, b], for any real function f which is bounded on [a,b] we write

L(f, P, α) :=
k∑

j=1

inf {f(x) : α(xj−1) ≤ x ≤ α(xj)} × (α(xj)− α(xj−1))

U(f, P, α) :=
k∑

j=1

sup {f(x) : α(xj−1) ≤ x ≤ α(xj)} × (α(xj)− α(xj−1))

Now, we define

L(f, α) = sup{L(f, P, α) : P is a partition of [a, b]}

U(f, α) = inf{U(f, P, α) : P is a partition of [a, b]}

If L(f, α) = U(f, α), then we say f is integrable with respect to α, in Riemann sense

and write
∫ b

a
f(x)dα(x). This is the Riemann-Stieltjes integral of f with respect to α.

(h) f is continuous at x ∈ X if for every ε > 0, there is δ > 0 such that f(B(x, δ)) ⊂
B(f(x), ε); and f is a continuous function if it is continuous at each point of X.

(i) f is Lipschitz continuous if there is λ > 0 such that d′(f(a), f(b)) ≤ λd(a, b) for
every a, b ∈ X.

(j) f is uniformly continuous if for every ε > 0 there is δ > 0 such that f(B(x, δ)) ⊂
B(f(x), ε) for every x ∈ X.
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4. (i) A◦ = ϕ as A is not a neighbourhood of any of its points.
(ii) A′ = A as if we draw an open disc containing (x, y), such that x+ y ∈ N contains
infinitely many points of A.
(iii) Ā = A ∪ A′ = A
(iv) iso (A) = A− A′ = ϕ
(v) As A◦ ̸= A, therefore A is not open.
(vi) As A′ ⊆ A, therefore A is closed.
(vii) Clearly, A is not bounded.
(viii) Since A is not bounded, therefore A is not compact.
(ix) As Ā ̸= R2, therefore A is not dense.
(x) Since Ln = {(x, y) : x + y = n}, then A = L1 ∪ (

⋃∞
n=2 Ln) , L1 and

⋃∞
n=2 Ln are

closed disjoint sets. Therefore, A is not connected.
(xi) As A′ = A, therefore A is perfect.
(xii) As iso (A) ̸= A, therefore A is not discrete.

5. (a) Suppose that p ∈ X and f(p) ∈ V . Since V is open, there exists ε > 0 such that
y = f(x) ∈ V if dY (f(x), f(p)) < ε, and since f is continuous at p, there exists δ > 0
such that dY (f(x), f(p)) < ε if dX(x, p) < δ. Thus x ∈ f−1(V ) as soon as dX(x, p) < δ.

(b) If x, y ∈ Rn, then |xj − yj| ≤ ∥x − y∥, and hence the projection πj : Rn → R to
the j th coordinate is (Lipschitz) continuous. Any linear map f : Rn → Rm may be
written as f = (f1, . . . , fm), where fj : Rn → R is linear. Note that each fj is a linear
combination of projections, and hence continuous. Thus every linear map f : Rn → Rm

is continuous. We may identify an m×n real matrix with an element of Rm×n = Rmn.
With this identification, we may see that the determinant function det : Rn×n → R is
a finite linear combination of product of projections and hence continuous.

The preimage of an open set is open from 5(a). Then because a matrix is non-singular
if and only if its determinant is not 0 , we have that

GLn(R) = {A ∈ Mn(R) | A is non-singular } = det−1(R− {0})

and R− {0} is an open set of R, hence GLn(R) is an open subset of Mn(R).
If A ∈ Rn×n, then the characteristic polynomial p of A is defined as p(x) = det(xI−A),
and deg(p) = n ≥ 1. Since p has at most n roots in R, for any ε > 0 we may choose
x ∈ (−ε, ε) with p(x) ̸= 0 and then det(A − xI) = (−1)np(x) ̸= 0. This shows that
{A ∈ Rn×n : det(A) ̸= 0} is also dense in Rn×n.

6. (a) For any (a1, a2) ∈ B2(0, 1), we have

|a1|+ |a2| = d2 ((a1, a2) , (0, 0)) < 1.

It follows that |a1| , |a2| < 1. Hence d1 ((a1, a2) , (0, 0)) = max {|a1| , |a2|} < 1 and so
(a1, a2) ∈ B1(0, 1).

(b) Yes. For example, define d3 by

d3(x, y) :=
4

3
d1(x, y).

It is obvious that d3 is also a metric, and

B3(0, 1) =

{
(x1, x2) :

4

3
max {|x1| , |x2|} < 1

}
=

{
(x1, x2) : |x1| <

3

4
, |x2| <

3

4

}
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Note that (
7

8
, 0

)
∈ B2(0, 1)\B3(0, 1)

and (
5

8
,
5

8

)
∈ B3(0, 1)\B2(0, 1)

(c) It is not valid in either metric space. Let L1 := {(1, t) : t ∈ R}, L2 := {(t, 1 − t) :
t ∈ R}, and b := 0 ∈ R2. Then in (R2, d1),

d1 (b, L1) = 1 = d1((0, 0), (1, t))

for any t ∈ R satisfying |t| ≤ 1, while in (R2, d2),

d2 (b, L2) = 1 = d2((0, 0), (u, v))

for any u, v ∈ R satisfying u ≥ 0, v ≥ 0, u+ v = 1. (d) (i) For any N ∈ N,

d1((−N, 1), (N, 1)) = 2N ≥ N

Thus H ⊂ (R2, d1) is unbounded.

(ii) Yes, such d4 exists. Define d4(x, y) :=
d1(x,y)

1+d1(x,y)
for any x, y ∈ R2. It is easy to verify

that d is a well-defined metric on R. For any x, y ∈ H, we have d4(x, y) ≤ 1. Thus H
is bounded in (R2, d4).

7. It is elementary to verify that d is a well-defined metric on M22. Let
{
An =

(
anij

)}
n∈N

be a Cauchy sequence in (M22, d). By definition, for any ε > 0, there exists N ∈ N
such that

max
1≤i,j≤2

∣∣anij − amij
∣∣ = d (An, Am) < ε whenever n,m ≥ N.

It follows that for any fixed pair (i, j),∣∣anij − amij
∣∣ < ϵ whenever n,m ≥ N .

Hence
{
anij

}
n∈N is a Cauchy sequence in R, which must be convergent. Let aij :=

limn→∞ anij. Then A := (aij) is the limit of An in d. In fact, for any ε > 0, for any
i, j = 1, 2, there exists Nij ∈ N such that∣∣anij − aij

∣∣ < ε whenever n ≥ Nij.

Take N := max1≤i,j≤2Nij. Then

d (An, A) = max
1≤i,j≤2

∣∣anij − aij
∣∣ < ε whenever n ≥ N.

8. [Contraction Mapping Theorem] A contraction T of a complete metric space X has a
unique fixed point p.

Proof: If p and p′ are two fixed points, item[??] implies d (p, p′) ≤ αd (p, p′), so so
d (p, p′) = 0 and p = p′. Hence T has at most one fixed point.

To prove it has one, take any point x in X and consider the sequence of iterates:
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x, T (x), T (T (x)), . . .

That is, define a sequence {pn} inductively as follows:

p0 = x, pn+1 = T (pn) , n = 0, 1, 2, . . .

We will prove that {pn} converges to a fixed point of T . First we show that {pn} is a
Cauchy sequence. From the definition of contraction map, we have

d (pn+1, pn) = d (T (pn) , T (pn−1)) ≤ αd (pn, pn−1)

so, by induction, we find

d (pn+1, pn) ≤ αnd (p1, p0) = cαn

where c = d (p1, p0). Using the triangle inequality we find, for m > n,

d (pm, pn) ≤
m−1∑
k=n

d (pk+1, pk) ≤ c
m−1∑
k=n

αk = c
αn − αm

1− α
<

c

1− α
αn

Since αn → 0 as n → ∞, this inequality shows that {pn} is a Cauchy sequence. But
X is complete so there is a point p in X such that pn → p. By continuity of T ,

T (p) = T
(
lim
n→∞

pn

)
= lim

n→∞
T (pn) = lim

n→∞
pn+1 = p

so p is a fixed point of T . This completes the proof.

9. (a)

Since f is a continuous function and α is a non-decreasing on [0,1], hence f is RS-
integrable and

∫ 1

0

fdα = lim
∥P∥→0

S(P, f, α)

Consider a partition P of [0, 1] as follows:

P =

{
0,

1

n
,
2

n
, . . . ,

r − 1

n
,
r

n
, . . . ,

n

n
= 1

}
.

Here rth sub-interval Ir = [xr−1, xr] =
[
r−1
n
, r
n

]
, where r = 1, 2, . . . ., n Suppose that

ξr =
r
n
∈
[
r−1
n
, r
n

]
, for r = 1, 2, . . . , n
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∴ S(P, f, α) =
n∑

r=1

f (ξr) δαr =
n∑

r=1

f (ξr) [α (xr)− α (xr−1)]

=
n∑

r=1

f
( r

n

)[
α
( r

n

)
− α

(
r − 1

n

)]
=

n∑
r=1

r

n

[
r2

n2
− (r − 1)2

n2

]
, as f(x) = x, α(x) = x2

=
1

n3

n∑
r=1

(
2r2 − 1

)
=

2

n3

n∑
r=1

r2 − 1

n3

n∑
r=1

r

=
2

n3
· n(n+ 1)(2n+ 1)

6
− 1

n3
· n(n+ 1)

2

=
1

6n2
·
{
2
(
2n2 + 3n+ 1

)
− 3n− 3

}
=

1

6

(
4 +

1

2n
− 1

6n2

)

∴ By (1),

∫ 1

0

fdα = lim
∥P∥00

1

6

(
4 +

1

2n
− 1

6n2

)
= lim

n→∞

1

6

(
4 +

1

2n
− 1

6n2

)
= 2/3

(b)∫ 10

0

f(x)dα(x) = f(10)α(10)− f(0)α(0)−
∫ 10

0

α(x)df(x)

= 10× 20− 0× 0−
∫ 10

0

(x+ [x])dx

= 200− 50−
∫ 10

0

[x]dx = 150− 45 = 105

10. (a) True.

Proof. Since a singleton cannot be split into two nonempty subsets, it is clear that
every singleton is connected. In particular, every metric space contains connected
subsets.

(b) True.

Proof. For any open set U ⊂ R2 and any x ∈ π(U) ⊂ R, there exists y ∈ R such that
(x, y) ∈ U . Since U ⊂ R2 is open, there exists r > 0 such that BR2((x, y), r) ⊂ U .
Hence x ∈ (x − r, x + r) = BR(x, r) ⊂ π (BR2((x, y), r)) ⊂ π(U). Therefore, π(U) is
open and so π is open.

(c) False.

Example: Let X := {0} ⊂ R and Y := R with the usual Euclidean metric. Consider
f(x) := x, x ∈ X. Then it is evident that f is closed and continuous. However, as the
image of the open set {0} ⊂ X equals {0} ⊂ Y which is not open in Y, f is not open.

(d) False.

Example: Let X := R, S := [0, 1], T := (1, 2). Clearly S and T are disjoint but
S ∪ T = [0, 2) is connected.

(e) False.

Example: Let X := R\{0}. Then B(1, 2) = (−1, 0) ∪ (0, 3) is disconnected.
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