Hints / Answers / Solutions

1. 1. A° = ¢, A" = ¢,A = F, iso (A) = F, not open, closed, bounded, compact, not dense, not connected,
not perfect, discrete. 2. A° = ¢, A’ = ¢,A = N, iso (A) = N, not open, closed, not bounded, not compact,
not dense, not connected, not perfect, discrete. 3. A° = ¢, A’ = ¢, A = Z, iso (A) = Z, not open, closed,
not bounded, not compact, not dense, not connected, not perfect, discrete. 4. A° = ¢, A’ = R, A = R, iso
(A) = ¢, not open, not closed, not bounded, not compact, dense, notconnected, not perfect, not discrete.
5. A° = ¢, A’ = R,A = R, iso (A) = ¢, not open, not closed, not bounded, not compact, dense, not
connected, not perfect, not discrete. 6. A° = R — N, A’ = R,A = R, iso (4) = ¢, open, not closed, not
bounded, not compact, dense, not connected, not perfect, not discrete. 7. A° = R —Z, A’ = R, A = R,
iso (A) = ¢, open, not closed, not bounded, not compact, dense, not connected, not perfect, not discrete.
8. A° = ¢, A = R,A =R, iso (A) = ¢, not open, not closed, not bounded, not compact, dense, not
connected, not perfect, not discrete. 9. A° = ¢, A’ = R, A = R, iso (A) = ¢, not open, not closed, not
bounded, not compact, dense, not connected, not perfect, not discrete. 10. A° = (a,b), A’ = [a,b], A = [a, D],
iso (A) = ¢, open, not closed, bounded, not compact, not dense, connected, not perfect, not discrete. 11.
A° = (a,b),A" = A, A = [a,b], iso (A) = ¢, not open, closed, bounded, compact, not dense, connected,
perfect, not discrete. 12. A° = (a,b), A’ = [a,b], A = [a,b], iso (A) = ¢, not open, not closed, bounded,
not compact, not dense, connected, not perfect, not discrete. 13. A° = (a,b), A’ = [a,b],A = [a,b], iso
(A) = ¢, not open, not closed, bounded, not compact, not dense, connected, not perfect, not discrete. 14.
A° = ¢, A = ¢, A= ¢, iso (A) = ¢, open, closed, bounded, compact, not dense, connected, perfect, discrete.
15. A° =R, A’ =R, A =R, iso (A) = ¢, open, closed, not bounded, not compact, dense, connected, perfect,
not discrete. 16. A° = (1,2), A’ = [1,2], A = [1,2]U{3,4, 5}, iso (A) = {3,4, 5}, not open, not closed, bounded,
not compact, not dense, not connected, not perfect, not discrete. 17. A° = ¢, A’ = {0}, A = (% in € N) u{0},
iso (4) = %, not open, not closed, bounded, not compact, not dense, not connected, not perfect, discrete. 18.
A =¢, A ={1,-1},A= AU{l, -1}, iso (A) = A, not open, not closed, bounded, not compact, not dense,
not connected, not perfect, discrete. 19. A° = ¢, A’ = ¢, A = A, iso (A) = A, not open, closed, not bounded,
not compact, not dense, not connected, not perfect, discrete. 20. A° = ¢, A’ =N, A = AUA’,iso (A) = A— A,
not open, not closed, not bounded, not compact, not dense, not connected, not perfect, not discrete. 21.
A° = ¢ A = % u{0}, A= {% + %} U {0}, iso (A) = A — A’, not open, not closed, bounded, not compact,
not dense, not connected, not perfect, not discrete. 22. A° = ¢, A’ = {i% in € N} u{0},A = AuU{0},
iso (A) = A — A’, not open, not closed, bounded, not compact, not dense, not connected, not perfect, not
discrete. 23. A° = (0,2), A’ = [0,2], A = [0,2], iso (A) = ¢, not open, not closed, bounded, not compact, not
dense, connected, not perfect, not discrete. 24. A° = ¢, A’ = {1}, A = {1 + 3%} U{l},iso (A) =1+ 3%, not
open, not closed, bounded, not compact, not dense, not connected, not perfect, discrete. 25. A° = ¢, A’ =
¢, A = A, iso(A) = A, not open, closed, not bounded, not compact, not dense, not connected, not perfect,
discrete. 26. A° = ¢, A’ = {3":n e N}, A= AU A, iso (A) = A — A’, not open, not closed, not bounded,
not compact, not dense, not connected, not perfect, not discrete. 27. A° = (0,00), A’ = [0,00), A = [0, 00),
iso (A) = ¢, open, not closed, not bounded, not compact, not dense, connected, not perfect, not discrete. 28.
A° = (—00,—1), A’ = (=00, —1],A = (—00,—1], iso (A) = &, open, not closed, not bounded, not compact,
not dense, connected, not perfect, not discrete. 29. A° = ¢, A’ = {1,—-1}, A = {(71)" + %} U {1, -1}, iso
(A) = {(—1)" + %}, not open, not closed, bounded, not compact, not dense, not connected, not perfect,
discrete. 30. A° = ¢, A’ =0,A = A, iso (A) = A — {0}, not open, closed, bounded, compact, not dense, not
connected, not perfect, not discrete. 31. A° = ¢, A’ = {1}, A = AU {1}, iso (A) = A, not open, not closed,
bounded, not compact, not dense, not connected, not perfect, discrete. 32. A° = ¢, A’ = e, A = AU {e}, iso
(A) = A, not open, not closed, bounded, not compact, not dense, not connected, not perfect, discrete. 33.
A° = ¢, A = {2},1 :meN}U {3% :neN}U{0},A=AUA iso (A) = A, not open, not closed, bounded,
not compact, not dense, not connected, not perfect, discrete. 34. A° = ¢, A’ = 0,4 = {;—L + 3%} U {0},
iso (A) = A, not open, not closed, bounded, not compact, not dense, not connected, not perfect, discrete.
35. A°:¢,A’:{2%:mEN}7U{3% :neN}U{E‘% :TEN}U{Q%—F%H :m,neN}U{siT-i-%n :r,m € N},
U{z}n + 5i tm,r € N} U{0},A = AUA, iso (A) = A, not open, not closed, bounded, not compact, not
dense, not connected, not perfect, discrete. 36. A° = ¢, A’ = {0}, A = AU {0}, iso (A) = A, not open,
not closed, bounded, not compact, not dense, not connected, not perfect, discrete. 37. A° = ¢, A’ =
{0},A = AU {0}, iso (A) = A, not open, not closed, bounded, not compact, not dense, not connected,
not perfect, discrete. 38. A° = ¢, A’ = {1},A = AU {1}, iso (4) = A, not open, not closed, bounded,
not compact, not dense, not connected, not perfect, discrete. 39. A° = ¢, A’ = {1}, A = AU {1}, iso
(A) = A, not open, not closed, bounded, not compact, not dense, not connected, not perfect, discrete. 40.
A° =g, A ={sin(L)+1:neN}U{cos(L):neN}U{1},A=AUA, iso (A) = A— A’, not open, not




closed, bounded, not compact, not dense, not connected, not perfect, not discrete.
. (i) Finite set (i) {1 :n € N} (iii) {1+ (-1)": n € N} (iv) [a,8] (v) {5+ 1 :n e N}
. (i) [a,b] (ii) R = N (iii) (iv) ¢,R

. (a) (i) A° = {(z,y) : © > 0,y > 0} as there exist an open disc centered at (zo,yo) such that o > 0 and
yo > 0 which is entirely contained in A. (ii) A" = {(z,y) : > 0,y > 0} as every open disc containing (x,y)
such that > 0,y > 0, contains infinitely many points of A. (iii) A= AU A’ = A’ (iv) iso (A) = A — A’ = ¢
(v) As A° # A, therefore A is not open. (vi) As A’ ¢ A, therefore A is not closed. (vii) Clearly, A is not
bounded. (viii) Since A is neither bounded nor closed, therefore A is not compact. (ix) As A # R2, therefore
A is not dense. (x) A is path-connected as we can join any two points of the set A by a continuous curve
within the set A. (xi) A is connected as it is path-connected. (xii) A is convex as it contains all the points of
any line segment joining any two points of the set A. (xiii) As A’ # A, therefore A is not perfect. (xiv) As
iso (A) # A, therefore A is not discrete.

(b) (i) A° = A as there exist an open disc centered at (zo,yo) such that (zo,y0) € A which is entirely
contained in A. (i) A’ = {(z,y) 12 +y> <1} U {(2,y) : (x — 2)? + y? < 1} as every open disc containing
(z,y) such that 22 +y2 <1 or (z — 2)2 +y? < 1, contains infinitely many points of A. (iii) A =AU A’ = A’
(iv) iso (A) = A— A" = ¢ (v) As A° = A, therefore A is open. (vi) As A’ ¢ A, therefore A is not closed. (vii)
Clearly, A is bounded. (viii) Since A is not closed, therefore A is not compact. (ix) As A # R2, therefore A
is not dense. (x) A is not path connected as we cannot join some of the points of the set A by a continuous
curve within the set A. (xi) A is not connected as it is the union of two non empty disjoint open set. (xii) A
is not convex as it does not contain all the points of line segment joining some of the two points of the set A.
(xiii) As A" # A, therefore A is not perfect. (xiv) As iso (A) # A, therefore A is not discrete.

(c) (i) A° = ¢ as A is not a neighbourhood of any of its points. (ii) A" = ¢ as if we draw an open disc
containing (x,%), contains no points of A other than (z,y). (iii) A= AUA' = A (iv)iso (A)=A—- A" = A
(v) As A° # A, therefore A is not open. (vi) As A’ C A, therefore A is closed. (vii) Clearly, A is not bounded.
(viii) Since A is not bounded, therefore A is not compact. (ix) As A # R?, therefore A is not dense. (x) A is
not path connected as we cannot join some of the two points of the set A by a continuous curve within the
set A. (xi) We know that J], X; is connected iff each X; is connected and since N is not connected, therefore
A = Nx N is not connected. (xii) A is not convex as it does not contain some of the points of any line segment
joining any two points of the set A. (xiii) As A" # A, therefore A is not perfect. (xiv) As iso (4) = A,
therefore A is discrete.

(d) Let L, = {(z,y) : x +y = n} (i) A° = ¢ as A is not a neighbourhood of any of its points. (ii) A’ = A
as if we draw an open disc containing (z,y), such that x + y € N contains infinitely many points of A. (iii)
A=AUA = A (iv)iso (A) = A— A" = ¢ (v) As A° # A, therefore A is not open. (vi) As A’ C A, therefore
Ais closed. (vii) Clearly, A is not bounded. (viii) Since A is not bounded, therefore A is not compact. (ix) As
A # R?, therefore A is not dense. (x) A is not path connected as we cannot join some of the points of the set
A by a continuous curve within the set A. (xi) Since L,, = {(z,y) : 2 +y =n}, then A= L U(Us_y Ln), L1
and (J;_, L, are closed disjoint sets. Therefore, A is not connected. (xii) A is not convex as it does not
contain all the points of the line segment joining some of the two points of the set A. (xiii) As A’ = A,
therefore A is perfect. (xiv) As iso (A) # A, therefore A is not discrete.

(e) (i) A° = ¢ as A is not a neighbourhood of any of its points. (ii) A’ = R? as every point of R? is a limit
point of A. (iii) A= AU A’ =R? (iv) iso (A) = A — A’ = ¢ (v) As A° # A, therefore A is not open. (vi) As
A" ¢ A, therefore A is not closed. (vii) Clearly, A is not bounded. (viii) Since A is not bounded, therefore A
is not compact. (ix) As A = R2, therefore A is dense. (x) A is not path connected as we cannot join some
of the points of the set A by a continuous curve within the set A. (xi) Let f : A — Q be a map such that
f(z,y) = z+y, then f is continuous and onto and f(A) = Q and Q is not connected. So, A is not connected.
(xii) A is not convex as it does not contain all the points of the line segment joining some of the two points
of the set A. (xiii) As A’ # A, therefore A is not perfect. (xiv) As iso (A) # A, therefore A is not discrete.

. Let a, = # and let € > 0 be given. Then for n > m, we have

11
n?  m?

1 1 1 5 1 1 1
= — — — < — <& whenever m* > - | = < —
m?2 € n2 = m?

|an — am| = mZ  n2

i.e. whenever m > ﬁ

Thus if we choose a positive integer m > % then |a, — am,| < eVn > m Hence (a,) is a Cauchy sequence.
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11.

12.

13.

14.

every positive integer m there exist at least one n > m such that
|an — am| > o
Let g9 = %, then for every integer m, we have an integer m + 1 > m such that

1
Jamsr = am| = [(=1)" 1 = (~)" = 2> 2

Thus, ((—1)™) is not a Cauchy sequence.

. Do it yourself.

. Answer: True. Proof: (M1) and (M2) are clearly satisfied. For any z,y,z € R,

d(w,y)* = |z —y|
<le—zl+ |z -yl
=d(z,2)* +d(2,y)?
< [d(x, 2) + d(z,y)]?,

hence (M3) is also satisfied.

. Answer: False. Example: Take (z1,y1) = (1,0) and (z2,y2) = (0,1). Then

d(($1,y1)7(9027y2))
=4>2=d((z1,91),(0,0)) + d((0,0), (z2,y2))

and so the triangle inequality is violated.

Answer: False. Example: Take n = 2,z := (1,0),y := (—1,0). Then x # y but d(z,y) = 0.

. Let a, = (—1)™. To show that < a, > is not a Cauchy sequence, we have to find an £y > 0 such that for

d|p q d | p q r

, , - p |0 10 1 0 10 10
Answer: False. Example: Let X := {p, ¢, 7} and dy, d3 be defined by ¢ l10 0 10 0 0 1

r 1 10 O 10 1 0

It is easily shown that d; and dy are well-defined metrics on X. However,
d(p7 Q) = min {dl(p7 Q)v d2(p1 q)} = mln{107 10} =10
d(p1 T) = min {dl(p1 T)v d?(pa T)} = min{l, 10} =1
d(rﬂ q) = min {dl (T7 q)7 d2(r7 q)} = mln{107 1} =1

and so
d(p,q) =10 £ 2=1+1=d(p,7) +d(r, q).

Answer: False. Example: Let X :=R,S := (0,1), then 0 ¢ S but d(0,5) = inf{d(0,s) : s € S} =inf{s: 0 <

s<1}=0.

Answer: False. Example: Let X :=R,S :=(0,1),7 := (1,2). Then SNT = ¢ but d(S,T) = inf{d(s,t) : s €

S,teT}=0.

Answer: (a) No. Justification. Since d (1,3) = [|1 - %H = [3] =0 but 1 # 3, (M1) is violated. (b) No.

Justification. Since

d0,2)=(2-0?=4%2=12+1>=4(0,1) +d(1,2),

(M3) is violated. (c) Yes. Proof. It is clear that d(z,y) > 0 and d(z,z) = 0 for all z, y € R. Conversely, if

d(z,y) = 0, then
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Taking absolute values on both sides and simplify, we have |z| = |y|. Putting it back to (*), we have x =y
and so (M1) is satisfied. (M2) is obvious. (M3) follows immediately from the usual triangle inequality for
absolute value:

d(z,y) = |f(z) = f(y)l
<|f(@) = fE)+1F(2) = Fy)
=d(z,2) +d(z,y).
Answer: False. Example: Take X =R and d = d’ to be the Euclidean metric. Then D fails to be a metric as
it violates the triangle inequality (M3). In fact, for x = 1,y = 2, and z = 3, we have

D(z,2)=2-2=4>1+1= D(x,y) + D(y, 2).

(a) False, d is not a metric. Justification. In fact, for u = ((1)) and v = (8), we have

=5
(u—v)TA(u —v) = > <0

and d(u,v) is not defined and in particular, d is not a metric.

(b) Yes, d is a metric. Proof. The conditions d(u,v) > 0,d(u,u) = 0 and d(u,v) = d(v,u) follow directly
from that d; and dy are metrics. On the other hand, if max {d; (u,v), d2(u,v)} = d(u,v) = 0, we must have
di(u,v) = da(u,v) = 0 and so u = v. Finally, for any u,v,w € R2, we have either d(u,v) = d;(u,v) or
d(u,v) = da(u,v). Without loss of generality, assume that d(u,v) = dy(u,v). Then as d; < d, we have

d(u,v) = dy(u,v) < dqi(u,w) + di(w,v)
< d(u, w) + d(w,v)

Hence (M1)-(M3) are satisfied and so d is a metric.

(a) For any (a1,a2) € B2(0,1), we have

la1] + |az| = da ((a1,a2),(0,0)) < 1.

It follows that |a1|,|az| < 1. Hence d; ((a1,a2),(0,0)) = max {|a1], la2|} < 1 and so (a1, a2) € B1(0,1).
(b) Yes. For example, define d3 by
4
d3($7y) = gdl(l',y)

It is obvious that d3 is also a metric, and
4
B3(0,1) = < (21, 22) : gmax{|w1| Jzal} < 1

=9( )+ |<_1‘ |<_1
=4 (z1,22) : |T x
1,2 1 ) L2

Note that

7
(§7 0) S .BQ(O7 1)\B3(0, 1)
and
8’8
(c) It is not valid in either metric space. Let Ly := {(1,t) : t € R}, Ly :={(t,1 —¢t) : t € R}, and b := 0 € R2.
Then in (Rz, dl),

<5 5) € B3(0,1)\B2(0,1)

dl (bv Ll) =1= dl((07 0)7 (1’ t))
for any ¢ € R satisfying |t| < 1, while in (R?, dg),

d2 (b, LQ) =1= dg((o, 0)7 (U,’U))
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for any u,v € R satisfying v > 0,v > 0,u +v = 1. (d) (i) For any N € N,
di((=N,1),(N,1))=2N > N

Thus H C (R?,d;) is unbounded.

di(z,y)

1+d1 (z,y)
metric on R. For any x,y € H, we have d4(z,y) < 1. Thus H is bounded in (]R27 d4),

(ii) Yes, such dy exists. Define dy(z,y) := for any x,y € R2. It is easy to verify that d is a well-defined

Solution: Recall first that interior points of a set are automatically points in the given set. So to find all
interior points of a set, we only need to consider the points in the given set and study whether they are interior
points or not.

(a) Answer: (0,00) In fact, for any = € (0,00), Br (m, %) = (%, 371) C [0,00) and so every point in (0, c0) is
an interior point of [0,00) in R. It remains to consider the point 0 € [0,00). As Br(0,7) = (—r,r) ¢ [0,00)
for any r > 0, we see that 0 is not an interior point of [0, 00) in R. Thus the interior of [0,00) in R is (0, c0).
(b) Answer: (0,1). In fact, for any = € (0,1), if we write r := min{z,1 — z} > 0, then Bg(z,r) C [0,1).
Hence every point in (0,1) is an interior point of [0,1) in R. It remains to consider the point 0 € [0,1). As
Bgr(0,7) = (—r,r) ¢ [0,1) for any r > 0, we see that 0 is not an interior point of [0,1) in R. Thus the interior
of [0,1) in R is (0,1).

(¢) Answer: [0,1). Similar to part (b) above, for any x € (0,1), write 7 := min{z,1 — 2} > 0. We have
Bg(x,r) C [0,1) and so Bjg,«)(2,7) = Br(2,7)N[0,00) C [0,1)N[0,00) = [0,1). So every point in (0,1) is an
interior point of [0, 1) in [0, 00). It remains to consider the point 0 € [0,1). As B oy (0,7) = Br(0,7)N[0,00) =
(=r,r)N[0,00) = [0,7) C [0,1) for any 0 < r < 1, we see that 0 is an also interior point of [0,1) in [0, 00).
Therefore, the whole set [0, 1) is the interior of [0,1) in [0, c0).

(d) Answer: ¢. In fact, for any € Q and any r > 0, Bg(z,r) = (x — r,z + r) is bound to contain irrational
numbers. Hence Br(z,7) ¢ Q. Therefore, no point in @ can be an interior point of Q in R.

(a) False. Justification. It is obvious that Bg ((—1)n + %,r) ¢ S for any n € N and any » > 0. Hence no
point in S is an interior point of S in R and so S is not open in R.

(b) False. Justification. Consider 1 € R\S. For any r > 0,1+ 5~ € SNBg(1,r). So 1 € R\ is not an interior
point of R\\S and so R\S is not open in R. Hence S is not closed in R.

(c) False. Justification. Similar to (a).
(d) False. Justification. Similar to (b).

(e) True. Proof. Observe first that 7" contains all the positive elements of S. For any ¢ € T', write t = 1+ ﬁ,

where n € N. Note that all elements in Bg (t, ﬁ) are positive and so Bg (t, ﬁ) C T. Hence T is open in S.

Answer: True. Proof. Let S C X be a finite set. Write S = {z1,...,2n}. If {Ua},cp is an open cover of S
in X, then for any ¢ = 1,...,n, there is an «; € A such that x; € Uy, and so {U,, : i =1,...,n} is a finite
subcover of {Ua},ep-
Answer: False. Justification. Since N is unbounded. By Theorem 1.3.5, N is not compact. Alternatively,
{(n - %, n+ %) n e N} is an open cover of N without finite subcover. Hence N is not compact.

Answer: True. Proof. It is closed and bounded in R?, hence compact.

Answer: False. Justification. Although it is bounded, since it is not closed in R?, it is noncompact.

Answer: False. Justification. Although it is closed in R2, since it is unbounded, it is noncompact.

Answer: False. Justification. Although S is closed in R, since it is unbounded, it is noncompact. Alternatively,
{(=1,n) : n € N} is an open cover of S without finite subcover. Hence S is noncompact.

Answer: False. Justification. S is not closed in R. In fact, (R\Q)N[0, 1] does not have any interior point, hence
(R\Q) N [0,1] is not open in [0,1] and so S = [0, 1]\ ((R\Q) N[0, 1]) is not closed in [0, 1], thus noncompact. O
Alternatively, pick any irrational point a € S. Then

) ()
0= =, a7—71+—
n n n n neN

is an open cover of S in R which has no finite subcover. Here, we used the natural convention that (o, 8) := ¢
for a > 5.
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Answer: False. Justification. It is evident that {%}:;2 is a Cauchy sequence in (0, 1) which is not convergent
there.

Answer: False. Example: Let X = R with the Euclidean metric. Define

if n is even.

0 ifnisodd
Tp =4
n
Then {z,,} — 0 and hence in particular, it is Cauchy. However, whenever n, m € N are odd and distinct, no

matter how large they are, we have

1 1
n+1 m+1

d (Zn+17 -Tm-%—l) =

‘>0:d(xn,zm)

It is elementary to verify that d is a well-defined metric on Mas. Let {An = (a?j) }nGN be a Cauchy sequence
in (Mg, d). By definition, for any € > 0, there exists NV € N such that

max ’a?j — a;ﬂ =d(An, An) <e whenever n,m > N.
1<i,j<2
It follows that for any fixed pair (4, j),

|a?j —am < € whenever n,m > N.

Hence {a?j}neN is a Cauchy sequence in R, which must be convergent. Let a;; := lim;,,c a;;. Then A := (aij)
is the limit of A, in d. In fact, for any € > 0, for any ¢, j = 1,2, there exists N;; € N such that

|a?j — aij| <& whenever n > Nj;.
Take N := maxi<; j<2 Nj;. Then

— no__ ..
d(An,A)_lg_l%>é2{ai]- aij| <€ whenever n > N.

Answer: True. Proof. Let m; : R> — R be the projection of R? onto its i-th coordinate, i = 1,2 and 7; is
continuous for i = 1,2 (discussed in the class). Define F' : R? — R by

Flz,y) == yf(r) = (ma(z,9)) - (fom(z,y)).
Then we have A = F~!((0,00)). Since f,7m and ms are continuous, so is F. As (0,00) C R is open,

A= F~1((0,00)) C R? is open.
Answer: False. Example: Let X :=R,Y :={0,1}, and f : X — Y be given by

0 ifz=0
f@%_{1 if 2 #0

Then clearly f sends every compact set to a compact set but f is not continuous.

Answer: False. Example: Let f: R — R be given by
2

f@) = —

== R.
21 S

Then f(R) =[0,1) C R and so in particular, it is neither open nor closed.

2r x € (0, %]
1 ze(3,1).
0 z€l0,1]
1 z€l2,3].

o) =9, f1({0}) =10,1]
fﬁl({l}) = [273]7 fﬁl({07 1}) = [07 1} U [273}

(a) Example: Define f(z) =: { It is clear that f is continuous on (0,1) and f((0,1)) = (0, 1].

(b) Example: Define f(x) := { Note that the only open sets in T are ¢,{0},{1},{0,1}. As
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are all open in S, we conclude that f is continuous on S.

(c) Since S is compact, T is noncompact, and compactness should be preserved by continuous functions, there
cannot be any continuous function mapping S onto 7'.

(a) For any x € [0,1] N Q, take € := % For any § > 0, there exists y € Bjo)(z,6) N (R\Q), and we have
d(f(z), f(y)) = |L—0] =1 >e. So f is not continuous at z. Similarly, for any z € [0,1]N (R\Q), take & := 1.
For any § > 0, there exists y € Bjo,1j(z,d) N Q, and we have d(f(z), f(y)) =10—-1] =1 >¢e. So f is not
continuous at z. Combining, we see that f is not continuous anywhere in [0, 1].

(b) For z = 0, for any ¢ > 0, take 6 := £. Then we have g (B[OJ](O, §)) = ¢([0,0)) = ¢([0,¢)) C [0,¢) C
Bg(0,¢) = Br(g(0),¢). Hence g is continuous at x = 0. For any = € (0,1] N Q, take € := §. For any ¢ > 0,
there exists y € Byg,1j(z,9) N (R\Q), and we have d(g(z),g(y)) = |t —0] = 2 > €. So g is not continuous at z.
Similarly, for any 2 € (0,1] N (R\Q), take ¢ := §. For any ¢ € (O7 %), there exists y € Bjg yj(,0) NQ, and we
have d(g(z),9(y)) =10 —y| =y >z — 6 > 5 =¢. So g is not continuous at 2. Combining, we conclude that
g is continuous only at z = 0.

(¢c) h is continuous if and only if h(z) = ¢ for all x € [0,1]. In fact, it is easy to verify that the constant
function h = c is continuous. Conversely, let S = [0,1] N Q. Then S = [0,1] and so for every = € [0, 1],
there exists a sequence {,},cy in S such that {z,} — 2 as n — oo. By the continuity of h, we have
h(z) =limy, 00 h (z,) = ¢. Hence h(z) = ¢ for all z € [0, 1].

(a) Tt is elementary to verify that D is a well-defined metric on X x X. Let {(zn,yn)},cn e a sequence in
X x X such that {(@y,,yn)} = (x,y) asn — co. For any € > 0, there is N € N such that D ((z,,,yn), (z,y)) < e
for all n > N. Hence by triangle inequality,

|d (20, yn) — d(z,y)|
<ld(@n, yn) — d(zn,y)| + |d (20, y) — d(z,y)|
<d (Yn,y) + d(zn, )
<2D ((zn,yn) , (2,9))
<2¢ for all n > N.

Therefore, {d (v, yn)} — d(x,y) as n — oo and so d is continuous.

(b) Let {(zn, f (zn))},en be a convergent sequence in G, say, {(zn, f (zn))} — (z,y) as n — oo. By the
definition of D, we see easily that {z,} — z and {f (z,)} — y as n — oo. As f is continuous, we have
{f(zn)} = f(z) as n — oo and so f(z) = y. Hence {(z, f (zn))} — (z, f(z)) € G as n — co. Therefore, G
is closed in X x X.

(a) (i) True.

Proof. For any open set U C R? and any = € 7(U) C R, there exists y € R such that (z,y) € U. Since
U C R? is open, there exists r > 0 such that Bg:((x,y),r) C U. Hence x € (x — r,x + 1) = Bg(z,7) C
7 (Bgz2((z,y),7)) C ®(U). Therefore, 7(U) is open and so 7 is open.

(ii) False.

Example: S := {(z,1):2 >0} C R? is closed but 7(S) = (0,00) C R is not closed.

(b) Answer: False. Example: Let X := (0,1) C R and Y := R with the usual Euclidean metric. Consider
f(z):=z,z € X. As open sets in (0,1) are open in R, f is open. It is trivial that f is continuous. However,
as the image of the closed set (0,1) C X equals (0,1) C Y which is not closed in Y, f is not closed.

(c) Answer: False. Example: Let X := {0} C R and Y := R with the usual Euclidean metric. Consider

f(z):=x,2 € X. Then it is evident that f is closed and continuous. However, as the image of the open set
{0} C X equals {0} C Y which is not open in Y, f is not open.

(d) Answer: False. Example: Let X := R with the usual Euclidean metric and let Y := R with the discrete
metric. Consider f(z) := z,z € X. As all subsets of Y are clopen, f is both open and closed. However, as
the pre-image of the open set {0} C Y equals {0} C X which is not open in X, f is not continuous.

(a) Answer: True.

Proof. Consider the function f : (0,1) — R given by

o= (s (o 1)) e
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It is evident that f is 1 — 1, onto, continuous, with continuous inverse f=! : R — (0,1) given by

1 1
Fw) =ty b, yeR
T 2

Thus (0,1) = R.
(b) Answer: False.

Justification. Being a closed and bounded subset of R?, S! is compact. Since compactness is a topological
property, S! cannot be homeomorphic to the non-compact space R.

(c) Answer: False.

Justification. Write X = (0,1) U {2}. Suppose there were a homeomorphism f : X — (0,1]. Then as
(0,1) C X is closed, f((0,1)) C (0,1] should also be closed. However, observe that

f((0,1)) = (0, 1N\{f(2)}
_J0,1) iff(2)=1
T 10,a)U(a,1] if f(2) =a € (0,1).
In either case, f((0,1)) is not closed in (0, 1].
(a) As [0,1] and [2, 3] are nonempty disjoint open subsets of X whose union is X, they form a separation of
X.

(b) As [0,1) and (1, 2] are nonempty disjoint open subsets of X whose union is X, they form a separation of
X.

(c) As (—00,0) and (0, 00) are nonempty disjoint open subsets of X whose union is X, they form a separation
of X.

(d) Take any 2 € R\Q. Then {(—o0,z) N Q, (z,00) N Q} is a separation of Q.

(e) Let X be a discrete metric space with #(X) > 1 and a € X. Then X\{a} # ¢ and so {{a}, X\{a}} is a
separation of X.

(f) Since a singleton cannot be split into two nonempty subsets, it is clear that every singleton is connected.
In particular, every metric space contains connected subsets.

(g) Without loss of generality, we consider S*\{n, s}, where n := (0,1) denotes the "north pole” and s :=
(0, —1) the ”south pole” of the unit circle S'. Then

{$'n{(z,y) eR*:2>0},5" n{(z,y) eR*: 2 < 0}}

is a separation of S'\{n, s}.

(h) Without loss of generality, we take S' as the unit circle {(z,y,0) : 2> + y*> = 1} in the zy-plane in R®.
Then
{S2ﬂ {(:I;,y,z) eR3:z> 0},{520 {(:c,y,z) eR3:z< 0}}

is a separation of S%\S1.

(a) Answer: False.

Example: Let X :=R,S :=[0,1],7 := (1,2). Clearly S and T are disjoint but SUT = [0,2) is connected.
(b) Answer: False.

Example: Let X := R and S := {0}. Then S is connected but S ¢ ¢ = 5’.

(c¢) Answer: False.

Example: Let X :=R and S := (0,1). Then S is connected but 95 = {0, 1} is not.

(d) Answer: False. Example: Let X := R and S := (0,1) U {2}. Then S\S’ = {2} is connected but S is not.
(e) Answer: False. Example: Let X := R\{0}. Then B(1,2) = (—1,0) U (0, 3) is disconnected.



40. (a) For any € > 0 and any z1, 2 € (0,1], we have
If (x1) = [ (2)] = |2] — 23| = |21 + 22| |21 — 22| < 2|21 — 29].
Hence whenever 2 |[z1 — x2| < &, we have |f (z1) — f (22)| < e. This suggests that § := £/2 is a uniform § that

works everywhere on (0, 1].

So the formal proof goes as follows: For any € > 0, pick § := ¢/2. Then we have

If (z1) = f(z2)| = |75% —$§| = |1+ xa| |21 — 2] < 2]z — 22| <20 =¢

for all 1,29 € S with |21 — 22| < §. Hence f is uniformly continuous on (0, 1].

(b) Tt is clear that f is continuous everywhere on R. Also, by the Remark following Example 4.1.4, f is
uniformly continuous on every bounded subset of R. However, it is not uniformly continuous on (0,00). In
fact, in view of the preceding Remark, let us take ¢ := 1. For any § > 0, take z; := % and o 1= % + %. Then
21,29 € (0,00)



