Hints / Answers / Solutions

1. 1. $A^{\circ} = \phi, A' = \phi, \bar{A} = F$, iso A(A) = F, not open, closed, bounded, compact, not dense, not connected, not perfect, discrete. 2. $A^{\circ} = \phi, A' = \phi, \bar{A} = \mathbb{N}$, iso $(A) = \mathbb{N}$, not open, closed, not bounded, not compact, not dense, not connected, not perfect, discrete. 3. $A^{\circ} = \phi, A' = \phi, \bar{A} = \mathbb{Z}$, iso $(A) = \mathbb{Z}$, not open, closed, not bounded, not compact, not dense, not connected, not perfect, discrete. 4. $A^{\circ} = \phi, A' = \mathbb{R}, \bar{A} = \mathbb{R}$, iso $(A) = \phi$, not open, not closed, not bounded, not compact, dense, notconnected, not perfect, not discrete. 5. $A^{\circ} = \phi, A' = \mathbb{R}, \bar{A} = \mathbb{R}$, iso $(A) = \phi$, not open, not closed, not bounded, not compact, dense, not connected, not perfect, not discrete. 6. $A^{\circ} = \mathbb{R}$ $\mathbb{N}, A' = \mathbb{R}, \bar{A} = \mathbb{R}$, iso $(A) = \phi$, open, not closed, not bounded, not compact, dense, not connected, not perfect, not discrete. 7. $A^{\circ} = \mathbb{R}$ $\mathbb{Z}, A' = \mathbb{R}, \bar{A} = \mathbb{R}$ iso $(A) = \phi$, open, not closed, not bounded, not compact, dense, not connected, not perfect, not discrete. 8. $A^{\circ} = \phi, A' = \mathbb{R}, \bar{A} = \mathbb{R}$, iso $(A) = \phi$, not open, not closed, not bounded, not compact, dense, not connected, not perfect, not discrete. 9. $A^{\circ} = \phi, A' = \mathbb{R}, \bar{A} = \mathbb{R}$, iso $(A) = \phi$, not open, not closed, not bounded, not compact, dense, not connected, not perfect, not discrete. 10. $A^{\circ} = (a, b), A' = [a, b], \bar{A} = [a, b],$ iso $(A) = \phi$, open, not closed, bounded, not compact, not dense, connected, not perfect, not discrete. 11. $A^{\circ} = (a,b), A' = A, \overline{A} = [a,b],$ iso $(A) = \phi$, not open, closed, bounded, compact, not dense, connected, perfect, not discrete. 12. $A^{\circ} = (a,b), A' = [a,b], \bar{A} = [a,b],$ iso $(A) = \phi$, not open, not closed, bounded, not compact, not dense, connected, not perfect, not discrete. 13. $A^{\circ} = (a, b), A' = [a, b], \bar{A} = [a, b],$ iso $(A) = \phi$, not open, not closed, bounded, not compact, not dense, connected, not perfect, not discrete. 14. $A^{\circ} = \phi, A' = \phi, \bar{A} = \phi$, iso $(A) = \phi$, open, closed, bounded, compact, not dense, connected, perfect, discrete. 15. $A^{\circ} = \mathbb{R}, A' = \mathbb{R}, \bar{A} = \mathbb{R}$, iso $(A) = \phi$, open, closed, not bounded, not compact, dense, connected, perfect, not discrete. 16. $A^{\circ} = (1, 2), A' = [1, 2], \bar{A} = [1, 2] \cup \{3, 4, 5\}$, iso $(A) = \{3, 4, 5\}$, not open, not closed, bounded, not compact, not dense, not connected, not perfect, not discrete. 17. $A^{\circ} = \phi, A' = \{0\}, \bar{A} = \frac{1}{n} : n \in \mathbb{N} \cup \{0\},$ iso $(A) = \frac{1}{n}$, not open, not closed, bounded, not compact, not dense, not connected, not perfect, discrete. 18. $A^{\circ} = \phi, A' = \{1, 1\}, \bar{A} = A \cup \{1, 1\},$ iso (A) = A, not open, not closed, bounded, not compact, not dense, not connected, not perfect, discrete. 19. $A^{\circ} = \phi$, $A' = \phi$, $\bar{A} = A$, iso A' = A, not open, closed, not bounded, not compact, not dense, not connected, not perfect, discrete. 20. $A^{\circ} = \phi$, $A' = \mathbb{N}$, $\bar{A} = A \cup A'$, iso (A) = A - A', not open, not closed, not bounded, not compact, not dense, not connected, not perfect, not discrete. 21. $A^{\circ} = \phi, A' = \frac{1}{m} \cup \{0\}, \bar{A} = \{\frac{1}{m} + \frac{1}{n}\} \cup \{0\}, \text{ iso } (A) = A \quad A', \text{ not open, not closed, bounded, not compact, not dense, not connected, not perfect, not discrete. 22. <math>A^{\circ} = \phi, A' = \{\pm \frac{1}{n} : n \in \mathbb{N}\} \cup \{0\}, \bar{A} = A \cup \{0\}, \bar{A}$ iso (A) = A A', not open, not closed, bounded, not compact, not dense, not connected, not perfect, not discrete. 23. $A^{\circ}=(0,2), A'=[0,2], \bar{A}=[0,2],$ iso $(A)=\phi,$ not open, not closed, bounded, not compact, not dense, connected, not perfect, not discrete. 24. $A^{\circ} = \phi$, $A' = \{1\}$, $\bar{A} = \{1 + \frac{1}{3^n}\} \cup \{1\}$, iso $(A) = 1 + \frac{1}{3^n}$, not open, not closed, bounded, not compact, not dense, not connected, not perfect, discrete. 25. $A^{\circ} = \phi$, $A' = \phi$ $\phi, \bar{A} = A, \text{iso}(A) = A, \text{ not open, closed, not bounded, not compact, not dense, not connected, not perfect,}$ discrete. 26. $A^{\circ} = \phi$, $A' = \{3^n : n \in \mathbb{N}\}$, $\bar{A} = A \cup A'$, iso (A) = A A', not open, not closed, not bounded, not compact, not dense, not connected, not perfect, not discrete. 27. $A^{\circ} = (0, \infty), A' = [0, \infty), \bar{A} = [0, \infty)$ iso $(A) = \phi$, open, not closed, not bounded, not compact, not dense, connected, not perfect, not discrete. 28. $A^{\circ}=(\infty, 1), A'=(\infty, 1], \bar{A}=(\infty, 1],$ iso $(A)=\phi,$ open, not closed, not bounded, not compact, not dense, connected, not perfect, not discrete. 29. $A^{\circ} = \phi, A' = \{1, 1\}, \bar{A} = \{(1)^n + \frac{1}{n}\} \cup \{1, 1\}, \text{ iso } \{1, 1\}, \bar{A} = \{(1, 1)^n + \frac{1}{n}\} \cup \{1, 1\}, \bar{A} = \{(1, 1)^n + \frac{1}{n}\} \cup \{1, 1\}, \bar{A} = \{(1, 1)^n + \frac{1}{n}\} \cup \{1, 1\}, \bar{A} = \{(1, 1)^n + \frac{1}{n}\} \cup \{1, 1\}, \bar{A} = \{(1, 1)^n + \frac{1}{n}\}, \bar{A} = \{(1, 1)^n + \frac{1}$ $(A) = \{(1)^n + \frac{1}{n}\}$, not open, not closed, bounded, not compact, not dense, not connected, not perfect, discrete. 30. $A^{\circ} = \phi, A' = 0, \bar{A} = A$, iso A = A, iso A = A. connected, not perfect, not discrete. 31. $A^{\circ} = \phi, A' = \{1\}, \bar{A} = A \cup \{1\}, \text{ iso } (A) = A, \text{ not open, not closed,}$ bounded, not compact, not dense, not connected, not perfect, discrete. 32. $A^{\circ} = \phi, A' = e, \bar{A} = A \cup \{e\}$, iso (A) = A, not open, not closed, bounded, not compact, not dense, not connected, not perfect, discrete. 33. not compact, not dense, not connected, not perfect, discrete. 34. $A^{\circ} = \phi, A' = 0, \bar{A} = \left\{\frac{1}{2^n} + \frac{1}{3^n}\right\} \cup \{0\},$ iso (A) = A, not open, not closed, bounded, not compact, not dense, not connected, not perfect, discrete. 35. $A^{\circ} = \phi$, $A' = \left\{\frac{1}{2^m} : m \in \mathbb{N}\right\} \cup \left\{\frac{1}{3^n} : n \in \mathbb{N}\right\} \cup \left\{\frac{1}{5^r} : r \in \mathbb{N}\right\} \cup \left\{\frac{1}{2^m} + \frac{1}{3^n} : m, n \in \mathbb{N}\right\} \cup \left\{\frac{1}{5^r} + \frac{1}{3^n} : r, n \in \mathbb{N}\right\}, \cup \left\{\frac{1}{2^m} + \frac{1}{5^r} : m, r \in \mathbb{N}\right\} \cup \left\{0\right\}, \bar{A} = A \cup A'$, iso (A) = A, not open, not closed, bounded, not compact, not dense, not connected, not perfect, discrete. 36. $A^{\circ} = \phi, A' = \{0\}, \bar{A} = A \cup \{0\}, \text{ iso } (A) = A, \text{ not open,}$ not closed, bounded, not compact, not dense, not connected, not perfect, discrete. 37. $A^{\circ} = \phi, A' =$ $\{0\}, \bar{A} = A \cup \{0\}, \text{ iso } (A) = A, \text{ not open, not closed, bounded, not compact, not dense, not connected,}$ not perfect, discrete. 38. $A^{\circ} = \phi, A' = \{1\}, \bar{A} = A \cup \{1\}, \text{ iso } (A) = A, \text{ not open, not closed, bounded,}$ not compact, not dense, not connected, not perfect, discrete. 39. $A^{\circ} = \phi, A' = \{1\}, \bar{A} = A \cup \{1\},$ iso (A) = A, not open, not closed, bounded, not compact, not dense, not connected, not perfect, discrete. 40. $A^{\circ} = \phi, A' = \left\{\sin \frac{1}{n}\right\} + 1 : n \in \mathbb{N}\right\} \cup \left\{\cos \frac{1}{n}\right\} : n \in \mathbb{N}\right\} \cup \left\{1\right\}, \bar{A} = A \cup A', \text{ iso } (A) = A - A', \text{ not open, not open, not open}$ closed, bounded, not compact, not dense, not connected, not perfect, not discrete.

- 2. (i) Finite set (ii) $\{\frac{1}{n}: n \in \mathbb{N}\}$ (iii) $\{1+(1)^n: n \in \mathbb{N}\}$ (iv) [a,b] (v) $\{5+\frac{1}{n}: n \in \mathbb{N}\}$
- 3. (i) [a, b] (ii) \mathbb{R} \mathbb{N} (iii) (iv) ϕ, \mathbb{R}
- 4. a) (i) A° = {(x,y) : x > 0, y > 0} as there exist an open disc centered at (x₀, y₀) such that x₀ > 0 and y₀ > 0 which is entirely contained in A. (ii) A' = {(x,y) : x ≥ 0, y ≥ 0} as every open disc containing (x, y) such that x ≥ 0, y ≥ 0, contains infinitely many points of A. (iii) Ā = A ∪ A' = A' (iv) iso (A) = A A' = φ (v) As A° ≠ A, therefore A is not open. (vi) As A' A, therefore A is not closed. (vii) Clearly, A is not bounded. (viii) Since A is neither bounded nor closed, therefore A is not compact. (ix) As Ā ≠ ℝ², therefore A is not dense. (x) A is path-connected as we can join any two points of the set A by a continuous curve within the set A. (xi) A is connected as it is path-connected. (xii) A is convex as it contains all the points of any line segment joining any two points of the set A. (xiii) As A' ≠ A, therefore A is not perfect. (xiv) As iso (A) ≠ A, therefore A is not discrete.
 - b) (i) $A^{\circ} = A$ as there exist an open disc centered at (x_0, y_0) such that $(x_0, y_0) \in A$ which is entirely contained in A. (ii) $A' = \{(x,y): x^2 + y^2 \le 1\} \cup \{(x,y): (x-2)^2 + y^2 \le 1\}$ as every open disc containing (x,y) such that $x^2 + y^2 \le 1$ or $(x-2)^2 + y^2 \le 1$, contains infinitely many points of A. (iii) $\bar{A} = A \cup A' = A'$ (iv) iso $(A) = A A' = \phi$ (v) As $A^{\circ} = A$, therefore A is open. (vi) As A' A, therefore A is not closed. (vii) Clearly, A is bounded. (viii) Since A is not closed, therefore A is not compact. (ix) As $\bar{A} \ne \mathbb{R}^2$, therefore A is not dense. (x) A is not path connected as we cannot join some of the points of the set A by a continuous curve within the set A. (xi) A is not connected as it is the union of two non empty disjoint open set. (xii) A is not convex as it does not contain all the points of line segment joining some of the two points of the set A. (xiii) As $A' \ne A$, therefore A is not discrete.
 - c) (i) $A^{\circ} = \phi$ as A is not a neighbourhood of any of its points. (ii) $A' = \phi$ as if we draw an open disc containing (x,y), contains no points of A other than (x,y). (iii) $\bar{A} = A \cup A' = A$ (iv) iso (A) = A A' = A (v) As $A^{\circ} \neq A$, therefore A is not open. (vi) As $A' \subseteq A$, therefore A is closed. (vii) Clearly, A is not bounded. (viii) Since A is not bounded, therefore A is not compact. (ix) As $\bar{A} \neq \mathbb{R}^2$, therefore A is not dense. (x) A is not path connected as we cannot join some of the two points of the set A by a continuous curve within the set A. (xi) We know that $\prod_i X_i$ is connected iff each X_i is connected and since \mathbb{N} is not connected, therefore $A = \mathbb{N} \times \mathbb{N}$ is not connected. (xii) A is not convex as it does not contain some of the points of any line segment joining any two points of the set A. (xiii) As $A' \neq A$, therefore A is not perfect. (xiv) As iso A0 is A1 therefore A2 is discrete.
 - d) Let $L_n = \{(x,y) : x+y=n\}$ (i) $A^{\circ} = \phi$ as A is not a neighbourhood of any of its points. (ii) A' = A as if we draw an open disc containing (x,y), such that $x+y \in \mathbb{N}$ contains infinitely many points of A. (iii) $\bar{A} = A \cup A' = A$ (iv) iso $A = A \cup A' = A$ (iv) as $A' = A \cup A' = A$ (iv) as $A' = A \cup A' = A$ (iv) Clearly, $A = A \cup A' = A \cup A' = A$ (iii) Since $A = A \cup A' = A \cup A' = A$ is not compact. (ix) As $\bar{A} \neq \mathbb{R}^2$, therefore $A = A \cup A' = A \cup A' = A$ is not bounded. (viii) Since $A = A \cup A' = A \cup A' = A$ is not compact. (ix) As $\bar{A} \neq \bar{A} = A \cup A' = A \cup A' = A$ is not dense. (x) $A = A \cup A' = A \cup A' = A$ is not convex as it does not contain all the points of the line segment joining some of the two points of the set $A \cup A' = A \cup A' = A \cup A' = A$ therefore $A = A \cup A' = A \cup A' = A \cup A' = A$ is perfect. (xiv) As iso $A = A \cup A' = A \cup A' = A \cup A' = A$ therefore $A = A \cup A' = A \cup A' = A \cup A' = A \cup A' = A$ is not discrete.
- 5. Let $a_n = \frac{1}{n^2}$ and let $\varepsilon > 0$ be given. Then for n > m, we have

$$|a_n-a_m| = \left|\frac{1}{n^2} - \frac{1}{m^2}\right| = \frac{1}{m^2} - \frac{1}{n^2} < \frac{1}{m^2} < \varepsilon \text{ whenever } m^2 > \frac{1}{\varepsilon} \quad \left[\because \frac{1}{n^2} < \frac{1}{m^2}\right]$$

i.e. whenever $m > \frac{1}{\sqrt{\varepsilon}}$

Thus if we choose a positive integer $m > \frac{1}{\sqrt{\varepsilon}}$ then $|a_n - a_m| < \varepsilon \forall n \ge m$ Hence $\langle a_n \rangle$ is a Cauchy sequence.

6. Let $a_n = (1)^n$. To show that $\langle a_n \rangle$ is not a Cauchy sequence, we have to find an $\varepsilon_0 > 0$ such that for every positive integer m there exist at least one n > m such that

$$|a_n \quad a_m| > \varepsilon_0$$

Let $\varepsilon_0 = \frac{1}{2}$, then for every integer m, we have an integer m+1 > m such that

$$|a_{m+1} a_m| = |(1)^{m+1} (1)^m| = 2 > \frac{1}{2}$$

Thus, $\langle (1)^n \rangle$ is not a Cauchy sequence.

- 7. Do it yourself.
- 8. Answer: True. Proof: (M1) and (M2) are clearly satisfied. For any $x, y, z \in \mathbb{R}$,

$$d(x,y)^{2} = |x y|$$

$$\leq |x z| + |z y|$$

$$= d(x,z)^{2} + d(z,y)^{2}$$

$$\leq [d(x,z) + d(z,y)]^{2}.$$

hence (M3) is also satisfied.

9. Answer: False. Example: Take $(x_1, y_1) = (1, 0)$ and $(x_2, y_2) = (0, 1)$. Then

$$\begin{split} d\left(\left({{x_1},{y_1}} \right),\left({{x_2},{y_2}} \right) \right)\\ &= 4 > 2 = d\left({\left({{x_1},{y_1}} \right),\left({0,0} \right)} \right) + d\left({\left({0,0} \right),\left({{x_2},{y_2}} \right)} \right) \end{split}$$

and so the triangle inequality is violated.

- 10. Answer: False. Example: Take n=2, x:=(1,0), y:=(1,0). Then $x\neq y$ but d(x,y)=0.

It is easily shown that d_1 and d_2 are well-defined metrics on X. However,

$$d(p,q) = \min\{d_1(p,q), d_2(p,q)\} = \min\{10, 10\} = 10$$

$$d(p,r) = \min\{d_1(p,r), d_2(p,r)\} = \min\{1, 10\} = 1$$

$$d(r,q) = \min\{d_1(r,q), d_2(r,q)\} = \min\{10, 1\} = 1$$

and so

$$d(p,q) = 10 \le 2 = 1 + 1 = d(p,r) + d(r,q).$$

- 12. Answer: False. Example: Let $X := \mathbb{R}, S := (0,1)$, then $0 \notin S$ but $d(0,S) = \inf\{d(0,s) : s \in S\} = \inf\{s : 0 < s < 1\} = 0$.
- 13. Answer: False. Example: Let $X := \mathbb{R}, S := (0,1), T := (1,2)$. Then $S \cap T = \phi$ but $d(S,T) = \inf\{d(s,t) : s \in S, t \in T\} = 0$.
- 14. Answer: (a) No. Justification. Since $d(1, \frac{1}{2}) = \left[\begin{vmatrix} 1 & \frac{1}{2} \end{vmatrix} \right] = \left[\frac{1}{2} \right] = 0$ but $1 \neq \frac{1}{2}$, (M1) is violated. (b) No. Justification. Since

$$d(0,2) = (2 0)^2 = 4 \le 2 = 1^2 + 1^2 = d(0,1) + d(1,2),$$

(M3) is violated. (c) Yes. Proof. It is clear that $d(x,y) \ge 0$ and d(x,x) = 0 for all $x, y \in \mathbb{R}$. Conversely, if d(x,y) = 0, then

$$\frac{x}{1+|x|} = f(x) = f(y) = \frac{y}{1+|y|}.$$

Taking absolute values on both sides and simplify, we have |x| = |y|. Putting it back to (*), we have x = y and so (M1) is satisfied. (M2) is obvious. (M3) follows immediately from the usual triangle inequality for absolute value:

$$\begin{aligned} d(x,y) &= |f(x) \quad f(y)| \\ &\leq |f(x) \quad f(z)| + |f(z) \quad f(y)| \\ &= d(x,z) + d(z,y). \end{aligned}$$

15. Answer: False. Example: Take $X = \mathbb{R}$ and d = d' to be the Euclidean metric. Then D fails to be a metric as it violates the triangle inequality (M3). In fact, for x = 1, y = 2, and z = 3, we have

$$D(x,z) = 2 \cdot 2 = 4 > 1 + 1 = D(x,y) + D(y,z).$$

16. (a) False, d is not a metric. Justification. In fact, for $u = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $v = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, we have

$$(u \quad v)^T A(u \quad v) = \frac{5}{2} < 0$$

and d(u, v) is not defined and in particular, d is not a metric.

(b) Yes, d is a metric. Proof. The conditions $d(u,v) \geq 0$, d(u,u) = 0 and d(u,v) = d(v,u) follow directly from that d_1 and d_2 are metrics. On the other hand, if $\max\{d_1(u,v),d_2(u,v)\}=d(u,v)=0$, we must have $d_1(u,v)=d_2(u,v)=0$ and so u=v. Finally, for any $u,v,w\in\mathbb{R}^2$, we have either $d(u,v)=d_1(u,v)$ or $d(u,v)=d_2(u,v)$. Without loss of generality, assume that $d(u,v)=d_1(u,v)$. Then as $d_1\leq d$, we have

$$d(u, v) = d_1(u, v) \le d_1(u, w) + d_1(w, v)$$

$$\le d(u, w) + d(w, v)$$

Hence (M1)-(M3) are satisfied and so d is a metric.

17. (a) For any $(a_1, a_2) \in B_2(0, 1)$, we have

$$|a_1| + |a_2| = d_2((a_1, a_2), (0, 0)) < 1.$$

It follows that $|a_1|, |a_2| < 1$. Hence $d_1((a_1, a_2), (0, 0)) = \max\{|a_1|, |a_2|\} < 1$ and so $(a_1, a_2) \in B_1(0, 1)$.

(b) Yes. For example, define d_3 by

$$d_3(x,y) := \frac{4}{3}d_1(x,y).$$

It is obvious that d_3 is also a metric, and

$$B_3(0,1) = \left\{ (x_1, x_2) : \frac{4}{3} \max \left\{ |x_1|, |x_2| \right\} < 1 \right\}$$
$$= \left\{ (x_1, x_2) : |x_1| < \frac{3}{4}, |x_2| < \frac{3}{4} \right\}$$

Note that

$$\left(\frac{7}{8},0\right) \in B_2(0,1) \backslash B_3(0,1)$$

and

$$\left(\frac{5}{8}, \frac{5}{8}\right) \in B_3(0, 1) \backslash B_2(0, 1)$$

(c) It is not valid in either metric space. Let $L_1 := \{(1,t) : t \in \mathbb{R}\}, L_2 := \{(t,1-t) : t \in \mathbb{R}\}, \text{ and } b := 0 \in \mathbb{R}^2.$ Then in \mathbb{R}^2, d_1 ,

$$d_1(b, L_1) = 1 = d_1((0, 0), (1, t))$$

for any $t \in \mathbb{R}$ satisfying $|t| \leq 1$, while in \mathbb{R}^2, d_2 ,

$$d_2(b, L_2) = 1 = d_2((0, 0), (u, v))$$

for any $u, v \in \mathbb{R}$ satisfying $u \ge 0, v \ge 0, u + v = 1$. (d) (i) For any $N \in \mathbb{N}$,

$$d_1((N,1),(N,1)) = 2N \ge N$$

Thus $\mathbb{H} \subset \mathbb{R}^2, d_1$ is unbounded.

- (ii) Yes, such d_4 exists. Define $d_4(x,y):=\frac{d_1(x,y)}{1+d_1(x,y)}$ for any $x,y\in\mathbb{R}^2$. It is easy to verify that d is a well-defined metric on \mathbb{R} . For any $x,y\in\mathbb{H}$, we have $d_4(x,y)\leq 1$. Thus \mathbb{H} is bounded in \mathbb{R}^2,d_4).
- 18. Solution: Recall first that interior points of a set are automatically points in the given set. So to find all interior points of a set, we only need to consider the points in the given set and study whether they are interior points or not.
 - (a) Answer: $(0, \infty)$ In fact, for any $x \in (0, \infty)$, $B_{\mathbb{R}} x, \frac{x}{2} = \frac{x}{2}, \frac{3x}{2} \subset [0, \infty)$ and so every point in $(0, \infty)$ is an interior point of $[0, \infty)$ in \mathbb{R} . It remains to consider the point $0 \in [0, \infty)$. As $B_{\mathbb{R}}(0, r) = (-r, r) \not\subset [0, \infty)$ for any r > 0, we see that 0 is not an interior point of $[0, \infty)$ in \mathbb{R} . Thus the interior of $[0, \infty)$ in \mathbb{R} is $(0, \infty)$.
 - (b) Answer: (0,1). In fact, for any $x \in (0,1)$, if we write $r := \min\{x,1-x\} > 0$, then $B_{\mathbb{R}}(x,r) \subset [0,1)$. Hence every point in (0,1) is an interior point of [0,1) in \mathbb{R} . It remains to consider the point $0 \in [0,1)$. As $B_{\mathbb{R}}(0,r) = (-r,r) \not\subset [0,1)$ for any r > 0, we see that 0 is not an interior point of [0,1) in \mathbb{R} . Thus the interior of [0,1) in \mathbb{R} is (0,1).
 - (c) Answer: [0,1). Similar to part (b) above, for any $x \in (0,1)$, write $r := \min\{x,1 \quad x\} > 0$. We have $B_{\mathbb{R}}(x,r) \subset [0,1)$ and so $B_{[0,\infty)}(x,r) = B_{\mathbb{R}}(x,r) \cap [0,\infty) \subset [0,1) \cap [0,\infty) = [0,1)$. So every point in (0,1) is an interior point of [0,1) in $[0,\infty)$. It remains to consider the point $0 \in [0,1)$. As $B_{[0,\infty)}(0,r) = B_{\mathbb{R}}(0,r) \cap [0,\infty) = (r,r) \cap [0,\infty) = [0,r) \subset [0,1)$ for any 0 < r < 1, we see that 0 is an also interior point of [0,1) in $[0,\infty)$. Therefore, the whole set [0,1) is the interior of [0,1) in $[0,\infty)$.
 - (d) Answer: ϕ . In fact, for any $x \in \mathbb{Q}$ and any r > 0, $B_{\mathbb{R}}(x,r) = (x-r,x+r)$ is bound to contain irrational numbers. Hence $B_{\mathbb{R}}(x,r) \not\subset \mathbb{Q}$. Therefore, no point in \mathbb{Q} can be an interior point of \mathbb{Q} in \mathbb{R} .
- 19. (a) False. Justification. It is obvious that $B_{\mathbb{R}}$ (1)ⁿ + $\frac{1}{n}$, r) $\not\subset S$ for any $n \in \mathbb{N}$ and any r > 0. Hence no point in S is an interior point of S in \mathbb{R} and so S is not open in \mathbb{R} .
 - (b) False. Justification. Consider $1 \in \mathbb{R} \setminus S$. For any $r > 0, 1 + \frac{1}{2r} \in S \cap B_{\mathbb{R}}(1, r)$. So $1 \in \mathbb{R} \setminus S$ is not an interior point of $\mathbb{R} \setminus S$ and so $\mathbb{R} \setminus S$ is not open in \mathbb{R} . Hence S is not closed in \mathbb{R} .
 - (c) False. Justification. Similar to (a).
 - (d) False. Justification. Similar to (b).
 - (e) True. Proof. Observe first that T contains all the positive elements of S. For any $t \in T$, write $t = 1 + \frac{1}{2n}$, where $n \in \mathbb{N}$. Note that all elements in B_S $t, \frac{1}{2n}$ are positive and so B_S $t, \frac{1}{2n}$ $\subset T$. Hence T is open in S.
- 20. Answer: True. Proof. Let $S \subset X$ be a finite set. Write $S = \{x_1, \ldots, x_n\}$. If $\{U_i\}_{i \in \Lambda}$ is an open cover of S in X, then for any $i = 1, \ldots, n$, there is an $i \in \Lambda$ such that $x_i \in U$ and so $\{U_i: i = 1, \ldots, n\}$ is a finite subcover of $\{U_i\}_{i \in \Lambda}$.
- 21. Answer: False. Justification. Since $\mathbb N$ is unbounded. By Theorem 1.3.5, $\mathbb N$ is not compact. Alternatively, $\left\{n-\frac{1}{2},n+\frac{1}{2}\right):n\in\mathbb N\right\}$ is an open cover of $\mathbb N$ without finite subcover. Hence $\mathbb N$ is not compact.
- 22. Answer: True. Proof. It is closed and bounded in \mathbb{R}^2 , hence compact.
- 23. Answer: False. Justification. Although it is bounded, since it is not closed in \mathbb{R}^2 , it is noncompact.
- 24. Answer: False. Justification. Although it is closed in \mathbb{R}^2 , since it is unbounded, it is noncompact.
- 25. Answer: False. Justification. Although S is closed in \mathbb{R} , since it is unbounded, it is noncompact. Alternatively, $\{(-1,n):n\in\mathbb{N}\}$ is an open cover of S without finite subcover. Hence S is noncompact.
- 26. Answer: False. Justification. S is not closed in \mathbb{R} . In fact, $(\mathbb{R}\setminus\mathbb{Q})\cap[0,1]$ does not have any interior point, hence $(\mathbb{R}\setminus\mathbb{Q})\cap[0,1]$ is not open in [0,1] and so $S=[0,1]\setminus((\mathbb{R}\setminus\mathbb{Q})\cap[0,1])$ is not closed in [0,1], thus noncompact. Alternatively, pick any irrational point $a\in S$. Then

$$\left\{ \left(\begin{array}{cc} \frac{1}{n}, a & \frac{1}{n} \right), \left(a & \frac{1}{n}, 1 + \frac{1}{n} \right) \right\}_{n \in \mathbb{N}}$$

is an open cover of S in \mathbb{R} which has no finite subcover. Here, we used the natural convention that $(\ ,\beta):=\phi$ for $\geq \beta$.

- 27. Answer: False. Justification. It is evident that $\left\{\frac{1}{n}\right\}_{n=2}^{\infty}$ is a Cauchy sequence in (0,1) which is not convergent
- 28. Answer: False. Example: Let $X = \mathbb{R}$ with the Euclidean metric. Define

$$x_n := \begin{cases} 0 & \text{if } n \text{ is odd} \\ \frac{1}{n} & \text{if } n \text{ is even.} \end{cases}$$

Then $\{x_n\} \to 0$ and hence in particular, it is Cauchy. However, whenever $n, m \in \mathbb{N}$ are odd and distinct, no matter how large they are, we have

$$d(x_{n+1}, x_{m+1}) = \left| \frac{1}{n+1} - \frac{1}{m+1} \right| > 0 = d(x_n, x_m)$$

29. It is elementary to verify that d is a well-defined metric on M_{22} . Let $\{A_n = a_{ij}^n\}_{n \in \mathbb{N}}$ be a Cauchy sequence in (M_{22}, d) . By definition, for any $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$\max_{1 \le i, i \le 2} \left| a_{ij}^n \quad a_{ij}^m \right| = d\left(A_n, A_m\right) < \varepsilon \quad \text{whenever } n, m \ge N.$$

It follows that for any fixed pair (i, j),

$$\left|a_{ij}^n \quad a_{ij}^m\right| < \epsilon \quad \text{ whenever } n,m \geq N.$$

Hence $\left\{a_{ij}^n\right\}_{n\in\mathbb{N}}$ is a Cauchy sequence in \mathbb{R} , which must be convergent. Let $a_{ij}:=\lim_{n\to\infty}a_{ij}^n$. Then $A:=(a_{ij})$ is the limit of A_n in d. In fact, for any $\varepsilon>0$, for any i,j=1,2, there exists $N_{ij}\in\mathbb{N}$ such that

$$\begin{vmatrix} a_{ij}^n & a_{ij} \end{vmatrix} < \varepsilon$$
 whenever $n \ge N_{ij}$.

Take $N := \max_{1 \le i,j \le 2} N_{ij}$. Then

$$d(A_n, A) = \max_{1 \le i, j \le 2} |a_{ij}^n - a_{ij}| < \varepsilon$$
 whenever $n \ge N$.

30. Answer: True. Proof. Let $\pi_i: \mathbb{R}^2 \to \mathbb{R}$ be the projection of \mathbb{R}^2 onto its i-th coordinate, i=1,2 and π_i is continuous for i = 1, 2 (discussed in the class). Define $F : \mathbb{R}^2 \to \mathbb{R}$ by

$$F(x,y) := y f(x) = (\pi_2(x,y)) \cdot (f \circ \pi_1(x,y)).$$

Then we have $A = F^{-1}((0,\infty))$. Since f, π_1 and π_2 are continuous, so is F. As $(0,\infty) \subset \mathbb{R}$ is open, $A = F^{-1}((0,\infty)) \subset \mathbb{R}^2$ is open

31. Answer: False. Example: Let $X := \mathbb{R}, Y := \{0,1\}$, and $f: X \to Y$ be given by

$$f(x) := \begin{cases} 0 & \text{if } x = 0\\ 1 & \text{if } x \neq 0 \end{cases}$$

Then clearly f sends every compact set to a compact set but f is not continuous.

32. Answer: False. Example: Let $f: \mathbb{R} \to \mathbb{R}$ be given by

$$f(x) := \frac{x^2}{x^2 + 1}, \quad x \in \mathbb{R}.$$

Then $f(\mathbb{R}) = [0,1) \subset \mathbb{R}$ and so in particular, it is neither open nor closed.

33. (a) Example: Define $f(x) =: \begin{cases} 2x & x \in [0, \frac{1}{2}] \\ 1 & x \in [\frac{1}{2}, 1) \end{cases}$. It is clear that f is continuous on (0, 1) and f((0, 1)) = (0, 1]. (b) Example: Define $f(x) := \begin{cases} 0 & x \in [0, 1] \\ 1 & x \in [2, 3] \end{cases}$. Note that the only open sets in T are ϕ , $\{0\}$, $\{1\}$, $\{0, 1\}$. As

$$f^{-1}(\phi) = \phi, \quad f^{-1}(\{0\}) = [0, 1]$$

 $f^{-1}(\{1\}) = [2, 3], f^{-1}(\{0, 1\}) = [0, 1] \cup [2, 3]$

are all open in S, we conclude that f is continuous on S.

- (c) Since S is compact, T is noncompact, and compactness should be preserved by continuous functions, there cannot be any continuous function mapping S onto T.
- 34. (a) For any $x \in [0,1] \cap \mathbb{Q}$, take $\varepsilon := \frac{1}{2}$. For any $\delta > 0$, there exists $y \in B_{[0,1]}(x,\delta) \cap (\mathbb{R} \setminus \mathbb{Q})$, and we have $d(f(x), f(y)) = |1 \quad 0| = 1 > \varepsilon$. So f is not continuous at x. Similarly, for any $x \in [0,1] \cap (\mathbb{R} \setminus \mathbb{Q})$, take $\varepsilon := \frac{1}{2}$. For any $\delta > 0$, there exists $y \in B_{[0,1]}(x,\delta) \cap \mathbb{Q}$, and we have $d(f(x), f(y)) = |0 \quad 1| = 1 > \varepsilon$. So f is not continuous at x. Combining, we see that f is not continuous anywhere in [0,1].
 - (b) For x=0, for any $\varepsilon>0$, take $\delta:=\varepsilon$. Then we have g $B_{[0,1]}(0,\delta))=g([0,\delta))=g([0,\varepsilon))\subset [0,\varepsilon)\subset B_{\mathbb{R}}(0,\varepsilon)=B_{\mathbb{R}}(g(0),\varepsilon)$. Hence g is continuous at x=0. For any $x\in (0,1]\cap \mathbb{Q}$, take $\varepsilon:=\frac{x}{2}$. For any $\delta>0$, there exists $y\in B_{[0,1]}(x,\delta)\cap (\mathbb{R}\setminus\mathbb{Q})$, and we have $d(g(x),g(y))=|x-0|=x>\varepsilon$. So g is not continuous at x. Similarly, for any $x\in (0,1]\cap (\mathbb{R}\setminus\mathbb{Q})$, take $\varepsilon:=\frac{x}{2}$. For any $\delta\in (0,\frac{x}{2})$, there exists $y\in B_{[0,1]}(x,\delta)\cap \mathbb{Q}$, and we have d(g(x),g(y))=|0-y|=y>x $\delta>\frac{x}{2}=\varepsilon$. So g is not continuous at x. Combining, we conclude that g is continuous only at x=0.
 - (c) h is continuous if and only if h(x)=c for all $x\in[0,1]$. In fact, it is easy to verify that the constant function $h\equiv c$ is continuous. Conversely, let $S=[0,1]\cap\mathbb{Q}$. Then $\bar{S}=[0,1]$ and so for every $x\in[0,1]$, there exists a sequence $\{x_n\}_{n\in}$ in S such that $\{x_n\}\to x$ as $n\to\infty$. By the continuity of h, we have $h(x)=\lim_{n\to\infty}h(x_n)=c$. Hence h(x)=c for all $x\in[0,1]$.
- 35. (a) It is elementary to verify that D is a well-defined metric on $X \times X$. Let $\{(x_n, y_n)\}_{n \in \mathbb{N}}$ be a sequence in $X \times X$ such that $\{(x_n, y_n)\} \to (x, y)$ as $n \to \infty$. For any $\varepsilon > 0$, there is $N \in \mathbb{N}$ such that $D((x_n, y_n), (x, y)) < \varepsilon$ for all $n \ge N$. Hence by triangle inequality,

$$\begin{aligned} &|d\left(x_{n},y_{n}\right) - d(x,y)|\\ &\leq |d\left(x_{n},y_{n}\right) - d\left(x_{n},y\right)| + |d\left(x_{n},y\right) - d(x,y)|\\ &\leq d\left(y_{n},y\right) + d\left(x_{n},x\right)\\ &\leq 2D\left(\left(x_{n},y_{n}\right),\left(x,y\right)\right)\\ &< 2\epsilon \text{ for all } n\geq N. \end{aligned}$$

Therefore, $\{d(x_n, y_n)\} \to d(x, y)$ as $n \to \infty$ and so d is continuous.

- (b) Let $\{(x_n, f(x_n))\}_{n\in}$ be a convergent sequence in G, say, $\{(x_n, f(x_n))\} \to (x, y)$ as $n \to \infty$. By the definition of D, we see easily that $\{x_n\} \to x$ and $\{f(x_n)\} \to y$ as $n \to \infty$. As f is continuous, we have $\{f(x_n)\} \to f(x)$ as $n \to \infty$ and so f(x) = y. Hence $\{(x_n, f(x_n))\} \to (x, f(x)) \in G$ as $n \to \infty$. Therefore, G is closed in $X \times X$.
- 36. (a) (i) True.

Proof. For any open set $U \subset \mathbb{R}^2$ and any $x \in \pi(U) \subset \mathbb{R}$, there exists $y \in \mathbb{R}$ such that $(x,y) \in U$. Since $U \subset \mathbb{R}^2$ is open, there exists r > 0 such that $B_{\mathbb{R}^2}((x,y),r) \subset U$. Hence $x \in (x-r,x+r) = B_{\mathbb{R}}(x,r) \subset \pi(B_{\mathbb{R}^2}((x,y),r)) \subset \pi(U)$. Therefore, $\pi(U)$ is open and so π is open.

(ii) False.

Example: $S := \{x, \frac{1}{x}\} : x > 0\} \subset \mathbb{R}^2$ is closed but $\pi(S) = (0, \infty) \subset \mathbb{R}$ is not closed.

- (b) Answer: False. Example: Let $X:=(0,1)\subset\mathbb{R}$ and $Y:=\mathbb{R}$ with the usual Euclidean metric. Consider $f(x):=x,x\in X$. As open sets in (0,1) are open in \mathbb{R} , f is open. It is trivial that f is continuous. However, as the image of the closed set $(0,1)\subset X$ equals $(0,1)\subset Y$ which is not closed in Y,f is not closed.
- (c) Answer: False. Example: Let $X:=\{0\}\subset\mathbb{R}$ and $Y:=\mathbb{R}$ with the usual Euclidean metric. Consider $f(x):=x,x\in X$. Then it is evident that f is closed and continuous. However, as the image of the open set $\{0\}\subset X$ equals $\{0\}\subset Y$ which is not open in Y,f is not open.
- (d) Answer: False. Example: Let $X := \mathbb{R}$ with the usual Euclidean metric and let $Y := \mathbb{R}$ with the discrete metric. Consider $f(x) := x, x \in X$. As all subsets of Y are clopen, f is both open and closed. However, as the pre-image of the open set $\{0\} \subset Y$ equals $\{0\} \subset X$ which is not open in X, f is not continuous.
- 37. (a) Answer: True.

Proof. Consider the function $f:(0,1)\to\mathbb{R}$ given by

$$f(x) := \tan \left(\pi \left(x - \frac{1}{2} \right) \right), \quad x \in (0, 1).$$

It is evident that f is 1 1, onto, continuous, with continuous inverse $f^{-1}: \mathbb{R} \to (0,1)$ given by

$$f^{-1}(y) := \frac{1}{\pi} \tan^{-1} y + \frac{1}{2}, \quad y \in \mathbb{R}.$$

Thus $(0,1) \cong \mathbb{R}$.

(b) Answer: False.

Justification. Being a closed and bounded subset of \mathbb{R}^2 , S^1 is compact. Since compactness is a topological property, S^1 cannot be homeomorphic to the non-compact space \mathbb{R} .

(c) Answer: False.

Justification. Write $X=(0,1)\cup\{2\}$. Suppose there were a homeomorphism $f:X\to(0,1]$. Then as $(0,1)\subset X$ is closed, $f((0,1))\subset(0,1]$ should also be closed. However, observe that

$$\begin{split} f((0,1)) &= (0,1] \backslash \{f(2)\} \\ &= \begin{cases} (0,1) & \text{if } f(2) = 1 \\ (0,a) \cup (a,1] & \text{if } f(2) = a \in (0,1). \end{cases} \end{split}$$

In either case, f((0,1)) is not closed in (0,1].

- 38. (a) As [0,1] and [2,3] are nonempty disjoint open subsets of X whose union is X, they form a separation of X.
 - (b) As [0,1) and (1,2] are nonempty disjoint open subsets of X whose union is X, they form a separation of X.
 - (c) As $(\infty, 0)$ and $(0, \infty)$ are nonempty disjoint open subsets of X whose union is X, they form a separation of X.
 - (d) Take any $x \in \mathbb{R} \setminus \mathbb{Q}$. Then $\{(\infty, x) \cap \mathbb{Q}, (x, \infty) \cap \mathbb{Q}\}$ is a separation of \mathbb{Q} .
 - (e) Let X be a discrete metric space with #(X) > 1 and $a \in X$. Then $X \setminus \{a\} \neq \phi$ and so $\{\{a\}, X \setminus \{a\}\}$ is a separation of X.
 - (f) Since a singleton cannot be split into two nonempty subsets, it is clear that every singleton is connected. In particular, every metric space contains connected subsets.
 - (g) Without loss of generality, we consider $S^1 \setminus \{n, s\}$, where n := (0, 1) denotes the "north pole" and s := (0, 1)
 - (0, 1) the "south pole" of the unit circle S^1 . Then

$$\left\{S^1\cap\left\{(x,y)\in\mathbb{R}^2:x>0\right\},S^1\cap\left\{(x,y)\in\mathbb{R}^2:x<0\right\}\right\}$$

is a separation of $S^1 \setminus \{n, s\}$.

(h) Without loss of generality, we take S^1 as the unit circle $\{(x,y,0): x^2+y^2=1\}$ in the xy-plane in \mathbb{R}^3 . Then

$${S^2 \cap \{(x, y, z) \in \mathbb{R}^3 : z > 0\}, \{S^2 \cap \{(x, y, z) \in \mathbb{R}^3 : z < 0\}}$$

is a separation of $S^2 \setminus S^1$.

39. (a) Answer: False.

Example: Let $X := \mathbb{R}, S := [0,1], T := (1,2)$. Clearly S and T are disjoint but $S \cup T = [0,2)$ is connected.

(b) Answer: False.

Example: Let $X := \mathbb{R}$ and $S := \{0\}$. Then S is connected but $S \not\subset \phi = S'$.

(c) Answer: False.

Example: Let $X := \mathbb{R}$ and S := (0,1). Then S is connected but $\partial S = \{0,1\}$ is not.

- (d) Answer: False. Example: Let $X:=\mathbb{R}$ and $S:=(0,1)\cup\{2\}$. Then $S\backslash S'=\{2\}$ is connected but S is not.
- (e) Answer: False. Example: Let $X := \mathbb{R} \setminus \{0\}$. Then $B(1,2) = (-1,0) \cup (0,3)$ is disconnected.

40. (a) For any $\varepsilon > 0$ and any $x_1, x_2 \in (0, 1]$, we have

$$|f(x_1) - f(x_2)| = |x_1^2 - x_2^2| = |x_1 + x_2| |x_1 - x_2| \le 2 |x_1 - x_2|.$$

Hence whenever $2|x_1 - x_2| < \varepsilon$, we have $|f(x_1) - f(x_2)| < \varepsilon$. This suggests that $\delta := \varepsilon/2$ is a uniform δ that works everywhere on (0,1].

So the formal proof goes as follows: For any $\varepsilon > 0$, pick $\delta := \varepsilon/2$. Then we have

$$|f(x_1) - f(x_2)| = |x_1^2 - x_2^2| = |x_1 + x_2| |x_1 - x_2| \le 2|x_1 - x_2| < 2\delta = \varepsilon$$

for all $x_1, x_2 \in S$ with $|x_1 - x_2| < \delta$. Hence f is uniformly continuous on (0, 1].

(b) It is clear that f is continuous everywhere on \mathbb{R} . Also, by the Remark following Example 4.1.4, f is uniformly continuous on every bounded subset of \mathbb{R} . However, it is not uniformly continuous on $(0,\infty)$. In fact, in view of the preceding Remark, let us take $\varepsilon := 1$. For any $\delta > 0$, take $x_1 := \frac{1}{\delta}$ and $x_2 := \frac{1}{\delta} + \frac{\delta}{2}$. Then $x_1, x_2 \in (0,\infty)$