Hints / Answers / Solutions

1.

Let ¢ denote the probability of a single odd face. Then the probability of a single even face is 2¢, and by
adding the probabilities of the 3 odd faces and the 3 even faces, we get 9¢ = 1. Thus, ¢ = 1/9. The desired
probability is

P({1,2,3}) =P({1}) + P({2}) + P({3}) = c+ 2c+ c=4c=4/9.

The easiest way to solve this problem is to make a table of some sort, similar to the one below.

Diel Die2 | Sum P( Sum)

2 2p

3p

4p
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8p

Total 80 p

P( All outcomes ) = 80p (Total from the table)
and therefore p = &

80
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P(Evensum )=2p+4p+4p+6p+4p+ 6p+ 6p + 8p = 40p = 1/2
(b)

P( Rolling a 2 and a 3) =P(2,3) + P(3,2) =5p+5p=10p=1/8

(a) The probability of Mike scoring 50 points is proportional to the area of the inner disk. Hence, it is equal
to amR? = an, where a is a constant to be determined. Since the probability of landing the dart on the board
is equal to one, ar10? = 1, which implies that a = 1/(1007). Therefore, the probability that Mike scores 50
points is equal to 7/(1007) = 0.01

(b) In order to score exactly 30 points, Mike needs to place the dart between 1 and 3 inches from the origin.
An easy way to compute this probability is to look first at that of scoring more than 30 points, which is equal
to am3? = 0.09. Next, since the 30 points ring is disjoint from the 50 points disc, probability of scoring more
than 30 points is equal to the probability of scoring 50 points plus that of scoring exactly 30 points. Hence,
the probability of Mike scoring exactly 30 points is equal to 0.09 — 0.01 = 0.08

(c) For the part (a) question. The probability of John scoring 50 points is equal to the probability of throwing
in the right half of the board and scoring 50 points plus that of throwing in the left half and scoring 50
points. The first term in the sum is proportional to the area of the right half of the inner disk and is equal to
anR?/2 = am/2, where « is a constant to be determined. Similarly, the probability of him throwing in the
left half of the board and scoring 50 points is equal to 87 /2, where § is a constant (not necessarily equal to
a ). In order to determine « and 3, let us compute the probability of throwing the dart in the right half of
the board. This probability is equal to

arR?/2 = ar10?/2 = a50r

Since that probability is equal to 2/3,« = 1/(757). In a similar fashion, 8 can be determined to be 1/(1507).
Consequently, the total probability is equal to 1/150+ 1/300 = 0.01



For the part (b), The probability of scoring exactly 30 points is equal to that of scoring more than 30 points
minus that of scoring exactly 50. By applying the same type of analysis as in (b) above, the probability is
found to be equal to 0.08.

These numbers suggest that John and Mike have similar skills, and are equally likely to win the game. The
fact that Mike’s better control (or worst, depending on how you look at it) of the direction of his throw does
not increase his chances of winning can be explained by the observation that both players’ control over the
distance from the origin is identical.

. Let A be the event that the first toss is a head and let B be the event that the second toss is a head. We
must compare the conditional probabilities P(AN B | A) and P(AN B | AU B). We have

PANE | 4) = P((A;(]j;mA) _ P(ﬁ(;)fa)

and

P(ANB)N(AUB)) ANB

P(ANB|AUB) = DAL D) =05

Since P(AUB) > P(A), the first conditional probability above is at least as large, so Alice is right, regardless of
whether the coin is fair or not. In the case where the coin is fair, that is, if all four outcomes HH, HT,TH,TT
are equally likely, we have
P(AnB) 1/4 1 PANB) _ 1/4
P(A)  1/2 2" P(AUB) 3/4
A generalization of Alice’s reasoning is that if A, B, and C are events such that B C C and ANB=ANC
(for example, if A C B C C'), then the event A is at least as likely if we know that B has occurred than if we
know that C has occurred. Alice’s reasoning corresponds to the special case where C' = AU B.

1/3.

. (a) Let A; be the event of playing with an opponent of type i. We have

P(A) =05 P(A)) =025 P(A5)=025

Also. let B be the event of winning. We have

P(B|A;)=03. P(B|A)=04. P(B|A3)=05
Thus, by the total probability theorem, the probability of winning is
P(B) =P (A1) P (B| A1)+ P (A2)P (B[ Az) + P (A43) P (B | 43)

=0.5-034+0.25-0.440.25-0.5
= 0.375.

(b) Here, Ay is the event of getting an opponent of type 4, and

P(A;)) =05, P(A) =025 P(43)=025

Also, B is the event of winning, and

P(B|A;)=03. P(B|Ay)=04, P(B|A3) =05
Suppose that you win. What is the probability P (4; | B) that you had an opponent of type 1 ?

Using Bayes’ rule, we have

P(A)P (B A)
(A1)P (B[ A1) +P(A2) P (B | A2) + P (A3)P (B | A3)
7 0.5-0.3
©05-0.34025-0440.25-0.5
=04.

P4 |B)= 5




6. Let P; denote the event where the prize is behind door i, C; denote the event where you initially choose
door i, and O; denote the event where your friend opens door i. The corresponding probability tree

is: (a) The probability of winning
when not switching from your initial choice is the probability that the prize is behind the door you initially
chose:

P( Win when not switching ) PNC)+P(P,NCy)+P(PsNC3)

P)P(Cy | P1)+P(P)P(Cy | P2) +P(P3)P(Cs | P3)
PP (C1) + P ()P (Cs) + P (P3) P (Cs)

1/3- (P (C1) + P (C2) + P (C3))

=1/3

P
P
P (

(b) The probability of winning when switching from your initial choice is the probability that the prize is
behind the remaining (unopened) door:



P( Win when switching ) =P (PL,NC2NO03)+P (P NC3NO02)+P(P,NC;NO3)

+P(PNC3n0)+P(PsNCiNO0) +P(PsNCynOn)

=P (P NCy)+P (P NCs)+P(PNCy)+P(PNCs)
+P(PsNC)+P(PsNCy)

=P (P1)P (C2) + P (P) P (C3) + P (P2) P (C1) + P (P2) P (Cs)
+ P (P3) P (C1) + P (P3) P (Ca)

=2/3- (P (C1) + P (C2) + P (C3))

=2/3

(c) Given (1, that you first choose door 1 , with the new strategy of switching only if door 3 is opened, you
win if the prize behind door 1 and door 2 is opened or if the prize is behind door 2 and door 3 is opened.

P ( Win with new strategy |C1) =P (P N0y | C)+P(P,NO03 | Ch)

PP |C)P(Os | PANCy)+P (P | C1)P (O3] PN CY)
P(P)P (O | PLNCY) +P (P)P (03| P,NCy)
3-P(Oy| PLNCy) +1/3-1

3-(P(O2| PANCY)+1)

1/
1/

Given that your initial choice is door 1 , the probability of winning under this new strategy is dependent on
how your friend decides which of doors 2 or 3 to open if the prize also lies behind door 1. If he always picks
door 2, then P (O2 | P NCy) =1 and P ( Win with new strategy | C1) = 2/3. If he picks between doors 2
and 3 with equal probability then P (O3 | P, N Cy) = 1/2 and P ( Win with new strategy | C1) = 1/2.

Explaining in words: Under the strategy of no switching, your initial choice will determine whether you
win or not, and the probability of winning is 1/3. This is because the prize is equally likely to be behind each
door.

Under the strategy of switching, if the prize is behind the initially chosen door (probability 1/3 ). you do not
win. If it is not (probability 2/3 ), and given that another door without a prize has been opened for you, you
will get to the winning door once you switch. Thus. the probability of winning is now 2/3, so (b) is a better
strategy than (a).

Consider now strategy (c). Under this strategy, there is insufficient information for determining the probability
of winning. The answer depends on the way that your friend chooses which door to open. Let us consider
two possibilities.

Suppose that if the prize is behind door 1, your friend always chooses to open door 2. (If the prize is behind
door 2 or 3, your friend has no choice.) If the prize is behind door 1 . your friend opens door 2 , you do not
switch, and you win. If the prize is behind door 2, your friend opens door 3, you switch. and you win. If the
prize is behind door 3. your friend opens door 2 . you do not switch, and you lose. Thus, the probability of
winning is 2/3. so strategy (c) in this case is as good as strategy (b).

Suppose now that if the prize is behind door 1. your friend is equally likely to open either door 2 or 3 . If
the prize is behind door 1 (probability 1/3 ). and if your friend opens door 2 (probability 1/2 ), you do not
switch and you win (probability 1/6 ). But if your friend opens door 3 , you switch and you lose. If the
prize is behind door 2 , your friend opens door 3 . you switch, and you win (probability 1/3 ). If the prize is
behind door 3, your friend opens door 2, you do not switch and you lose. Thus. the probability of winning is
1/6 +1/3 = 1/2, so strategy (c) in this case is inferior to strategy (b).

. (a) The events H; and Hy are (unconditionally) independent.
(b) But
P(Hi| D)=y, P(H|D)=3, P(HinH|D)=0
so that P(Hy N Hy | D) # P (H, | D)P (Hy | D), and Hy, Hy are not conditionally independent.

. (a) In order to wind up in the same place after two steps, the tightrope walker can either step forwards, then
backwards, or vice versa. Therefore the required probability is:

2-p-(1-p)



(b) The probability that after three steps he will be one step ahead of his starting point is the probability
that out of 3 steps in total, 2 of them are forwards, and one is backwards. This equals:

3-p°-(1-p)
(c) Given that out of his three steps only one is backwards, the sample space for the experiment is:
{(F,F,B); (F,B,F);(B,F, F)}

where F' denotes a step forwards, and B a step backwards. Each of these sample points is equally likely,
therefore the probability that his first step is a step forward is %

. (a) The tree representation during the winter can be drawn as the following:

0.8 Rain
The forecast is
"Rain”
P 0.2 No Rain
0.1 Rain
l-p
The forecast is
"No Rain"
0.9 Mo Rain

Let A be the event that the forecast was Rain, let B be the event that it rained, and let p be the probability
that the forecast says Rain. If it is in the winter, p = 0.7 and
P(B| A)P(A) (0.8)(0

- B (0.7) 56
PAIB) = =5 ~ 0907+ 01003) 5

Similarly, if it is in the summer, p = 0.2 and

_ P(B|AP(A) (0.8)(0-2) _2
P(A|B) = P(B)  (0.8)(02)+ (0.1)(08) 3

(b) Let C be the event that Victor is carrying an umbrella. Let D be the event that the forecast is no rain.
The tree diagram in this case is:

0s Umbrella
Missed the forecase
02
0s Mo umbrella
ik P Rain (umbrella)

Saw the forecast
1o No Rain (no umbrella)
P(D)=1-p
P(C) = (0.8)p+ (0.2)(0.5) = 0.8p + 0.1
P(C | D) = (0.8)(0) + (0.2)(0.5) = 0.1
(c) Let us first find the probability of rain if Victor missed the forecast.

P (actually rains | missed forecast ) = (0.8)p + (0.1)(1 —p) = 0.1+ 0.7p

Then, we can extend the tree in part (b) as follows:



0.1+0 T Actually rain
5 mbrela 0.9-07p Actually no rain
Missed the forecas Actually rain

1+0.

0.5 N hrells
O umbretly 09077 Actually no rain

08 Actually rain
Rain {umbrella)
02 Actually no rain

0. Actually rain
Mo Rain (no umbrella

08~ Acally no rain

0.8

Saw the forecast

Therefore, given that Victor is carrying an umbrella and it is not raining, we are looking at the two shaded

cases. (0.8)p(0.2)
(0.8)p(0.2) + (0.2)(0.5)(0.9 — 0.7p)
1

In fall and winter, p = 0.7, so the probability is Flg In summer and spring, p = 0.2, so the probability is %.

total ik 10
s l_j

P( saw forecast | umbrella and not raining ) =

Die 2

10. (a) (i) No. b - Overall, there are 25 different outcomes in the sample space.
For a total of 10 , we should get a 5 on both rolls. Therefore A C B, and
P(AnB) P(4)

PEIN= "5t ~ B !

We observe that to get at least one 5 showing, we can have 5 on the first roll, 5 on the second roll, or 5 on
both rolls, which corresponds to 9 distinct outcomes in the sample space. Therefore

P(B)= 5 #P(B] 4)

ii. No. Given event A, we know that both roll outcomes must be 5 . Therefore, we could not have event C
occur, which would require at least one 1 showing. Formally, there are 9 outcomes in C', and
9
PC)=—
(@) 25

But

P(C | A)=0+#P(C)

(b) i. No. Out of the total 25 outcomes, 5 outcomes correspond to equal numbers in the two rolls. In half of
the remaining 20 outcomes, the second number is higher than the first one. In the other half, the first number

is higher than the second. Therefore,
10

P(F)—2—5

There are eight outcomes that belong to event E :
E= {(17 2),(2, 3)7 (3, 4)7 (47 5), (27 1)7 (3, 2)7 (47 3), (57 4)}

To find P(F | E), we need to compute the proportion of outcomes in E for which the second number is higher
than the first one:

P(F| E) = 3 # P(F)



11.

12.

ii. Yes. Conditioning on event D reduces the sample space to just four outcomes

{(2,5),(3,4),(4,3),(5,2)}
which are all equally likely. It is easy to see that

P(E|D):§:%, P(F|D):§:%, P(EﬂF|D):;L:P(E|D)P(F|D)

P(findin Aandin A)=P(in A)-P(findin A| in A)=0.4-0.25=0.1
P( find in B and in B) =P(in B) - P( find in B | in B) =0.6-0.15 = 0.09
Oscar should search in Forest A first.
(b) Using Bayes’ Rule,
P(not findin A| in A)-P(in A)
(not findin A| in A)-P(in A)+ P( not find in A | in B) - P( in B)
(0.75) - (0.4) 1
(0.4) - (0.75) + (1) - (0.6) 3

P(in A | notﬁndinA):P

(¢) Again, using Bayes’ Rule,

P( find dog | looked in A) - P( looked in A)
P( find dog)
(0.25) - (0.4) - (0.5) 10

(0.25) - (0.4) - (0.5) + (0.15) - (0.6) - (0.5) 19

P( looked in A | find dog ) =

(d) In order for Oscar to find the dog, it must be in Forest A, not found on the first day, alive, and found
on the second day. Note that this calculation requires conditional independence of not finding the dog on
different days and the dog staying alive.

P( find live dog in A day 2) =P(in A) - P( not find in A day 1| in A)
- P( alive day 2) - P( find day 2| in A)

=0.4-0.75- (1 — %) -0.25=0.05

(a) Suppose we choose old widgets. Before we choose any widgets, there are 500 - 0.15 = 75 defective old
widgets. The probability that we choose two defective widgets is

P( two defective | old ) = P( first is defective | old ) - P( second is defective | first is defective, old )
75 74

=—— =0.02224
500 499 0.0

Now let’s consider the new widgets. Before we choose any widgets, there are 1500 - 0.05 = 75 defective old
widgets. Similar to the calculations above,

P (two defective | new) = P (first is defective | new) - P (second is defective | first is defective, new)
75 74

= ———— =0.002568
1500 1499

By the total probability law,

P( two defective ) =P( old ) - P( two defective | old )
+ P( new ) - P( two defective | new )

1 1
=5 0.02224 + 3 0.002568 = 0.01240



13.

14.

15.

Note that this number is very close to what we would get if we ignored the effects of removing one defective
widget before choosing the second widget:

P( two defective ) = P( old ) - P( two defective | old )

(new ) - P( two defective | new )

1
-0.15% + 5 -0.05%2 = 0.0125

(b) Using Bayes’ rule,

P( old ) - P( two defective | old)
P( old ) - P( two defective | old ) + P( new ) - P( two defective | new )
1.0.02224

=5 - = 0.8965
5 - 0.02224 + 5 - 0.002568

P(old | two defective ) =

(a) X is a Binomial random variable with n = 10,p = 0.2. Therefore,

10
px (k) = (k )0.2”“0.810_’“, for k=0,...,10

and px (k) = 0 otherwise.
(b) P( No hits ) = px(0) = (0.8)!° = 0.1074
(¢) P (More hists than misses) = 3,2 px (k) = >0 (10)0.250.810~% = 0.0064

(d) Since X is a Binomial random variable,

E[X]=10-02=2 var(X)=10-0.2-0.8=16

(e) Y = 2X — 3, and therefore

EY]=2E[X]-3=1 var(Y)=4var(X) =64

(f) Z = X2, and therefore
E[Z] = E [X?] = (E[X])? + var(X) = 5.6

(a) We expect E[X] to be higher than E[Y] since if we choose the student, we are more likely to pick a bus
with more students.

(b) To solve this problem formally, we first compute the PMF of each random variable and then compute
their expectations.

40/148 x =40
33/148 x =33
px(x) =4 25/148 = =25
50/148 = =50
0 otherwise.

and E[X] = 40755 + 333% + 2525 4+ 502% = 39.28

[ 1/4 y=40,33,25,50
py(y) = { 0 otherwise

and E[Y] = 401 + 331 4 255 + 504 = 37 Clearly, E[X] > E[Y].

The hats of n persons are thrown into a box. The persons then pick up their hats at random (i.e., so that
every assignment of the hats to the persons is equally likely). What is the probability that

(a) every person gets his or her hat back?

Answer: .
n:



16.

17.

Solution: consider the sample space of all possible hat assignments. It has n ! elements ( n hat selections
for the first person, after that n — 1 for the second, etc.), with every singleelement event equally likely (hence
having probability 1/n! ). The question is to calculate the probability of a single-element event, so the answer
is1/n!

(b) the first m persons who picked hats get their own hats back?

— !
Answer: =

Solution: consider the same sample space and probability as in the solution of (a). The probability of an
event with (n —m) ! elements (this is how many ways there are to disribute the remaining n — m hats after
the first m are assigned to their owners) is (n — m)!/n !

(¢c) everyone among the first m persons to pick up the hats gets back a hat belonging to one of the last m
persons to pick up the hats?

Answer; minomll 1 1

" (n) ()
Solution: there are m ! ways to distribute m hats among the first m persons, and ( n—m )! ways to distribute
the remaining n — m hats. The probability of an event with m!(n —m) ! elements is m!(n — m)!/nl.

Now assume, in addition, that every hat thrown into the box has probability p of getting dirty (independently
of what happens to the other hats or who has dropped or picked it up). What is the probability that

(d) the first m persons will pick up clean hats?
Answer: (1 —p)™.

Solution: the probability of a given person picking up a clean hat is 1 — p. By the independence assumption,
the probability of m selected persons picking up clean hats is (1 — p)™. (e) exactly m persons will pick up
clean hats?

Answer: (1 —p)mpm=™(").

m
Solution: every group G of m persons defines the event ”everyone from G picks up a clean hat, everyone not
from G picks up a dirty hat”. The events are disjoint. Each has probability (1 — p)™p™~"™. Since there are

(:1) such events, the answer follows.

Since 4 cards are fixed, Bob can only choose 4 more cards out of 48 remaining cards, so total number of hands

Bob can have such that they include Alice’s cards is (3) (448). The total number of ways Bob can choose any

. /52 e (0D
8 cards is (8). So the probability is <+

(%)

(a) The picture below illustrates the double sum needed to prove the statement of this problem:



We first note that

and proceed as follows:

k=1 k=1 i=k i=1 k=1 i=1
(b) We first compute
1 k<a

PY>k)={b—k+1 a+1<k<b
b—a+1 k>b+1

So
%) a b b—k+1
> = i
Y P(Y > k) L+ Y
k=1 k=1 k=a+1

1 b—a
:a+b—a+1zk
k=1
1 b—a+1)b—a)
b—a+1 2
b—a
2

:a—|—

:a+

_b+a
2
Therefore E[Y] = &2,

10



18. (a) For each value of X, we count the number of outcomes which have a difference that equals that value:

1/9 z=-2,2
2/9 x=-1,1
px (@) = 3% z=0
0 otherwise.
E[X] 22: (x) 21+ 12—1-034-124—21 0
= px(x) = —2= 4+ —1= — - - =0.
R 9" 99T 9
We can also see that E[X] = 0 because the PMF is symmetric around 0 . To find the variance of X, we first
compute
2
1 2 3 2 1 4
E[X?] = 2 —4- 112202412042
[Xx?] g;fpx@) g TlgH05+15+45 =3
and 4
var(X) = E [X?] — (E[X])? = 3
(b) Let Z = X2. By matching the possible values of X and their probabilities to the possible values of Z, we
obtain
2/9 z=4
4/9 z=1
Pz(2) =930 . —0
0 otherwise
priy)
4/9
3/9
2/9
-
0 1 g F

19. (a) The first part can be completed without reference to anything other than the die roll:
pN(n)

1/4

(b) When N = 0, the coin is not flipped at all, so K = 0. When N = n for n € {1,2,3}, the coin is flipped
n times, resulting in K with a distribution that is conditionally binomial. The binomial probabilities are all
multiplied by 1/4 because py(n) = 1/4 for n € {0, 1,2,3}. The joint PMF py x(n, k) thus takes the following
| k=0 k=1 k=2 k=3
n=01] 1/4 0 0 0
values and is zero otherwise: n = 1/8 1/8 0 0
n=21 1/16 1/8 1/16 0
n=3|1/32 3/32 3/32 1/32

11



(c) Conditional on N = 2, K is a binomial random variable. So we immediately see that

1/4,if k=0
1/2,if k=1
ik 12) = 1/4,if k=2

0, otherwise

This is a normalized row of the table in the previous part.

Moy (k1 2)

(d) To get K = 2 heads, there must have been at least 3 coin tosses, so only N = 3 and N = 4 have positive
conditional probability given K = 2.

_P{N=2}n{K=2}) 1/16 _
P12 = = oy T ettt A
Similarly, py |k (3 | 2) = 3/5.
P (112
35
25
n
2 3

20. (a) = 0 maximizes E[Y | X = z] since

2, ifx=0
3/2, it =2
BY 1 X =al=93/ if 2 =4

undefined,  otherwise.

(b) y = 3 maximizes var(X | Y = y) since

0, ify=0
8/3, ify=1
var(X | Y =y) =<1, ify=2
4, ify=3
undefined,  otherwise

(c) Sketch:

12



21.

22.

Pr(T)
3/8
1/4
1/8

(d) By traversing the points top to bottom and left to right, we obtain

1 15
BIXY]= 2(0-3+4-342:244-240-142-14+4-1+4-0)=

Conditioning on A removes the point masses at (0,1) and (0,3). The conditional probability of each of the
remaining point masses is thus 1/6, and

1
E[XY [A] = (4-3+2:244-242.144:1+4:0) =5

In general we have that E[aX + bY + ¢] = aE[X] 4+ DE[Y] + ¢. Therefore,
E[Z] =2 -E[X] -3 E[Y]
For the case of independent random variables, we have that if Z =a- X +b-Y, then
var(Z) = a? - var(X) + b? - var(Y)
Therefore, var(Z) =4 - var(X) + 9 - var(Y).

(a) We can find ¢ knowing that the probability of the entire sample space must equal 1.

r=1y=1
=c+c+2c+2c+4c+ 3c+c+ 6¢
= 20c
Therefore, ¢ = 2—10.
(b) py (2) = Zi:le,Y(xa 2) =2c+0+4c=6c= 3.
(c) Z=YX?

E[Z|Y =2]=E[YX?|Y =2]
=E[2X”|Y =2]
=2E[X?|Y =2]

pxpy(z|2) = p—x;;((;?)
Therefore,
=3 ifz=1
pxpy(@|2) = 5 =2 ifz=3
0 otherwise

3
E[Z|Y =2]=2) 2’pxy(z|2)

- Z;((;) 3+ 3)
)

13



23.

(d) Yes. Given X # 2, the distribution of X is the same given Y = y.

PX=z|Y=yX#2)=PX =z |X#2).

For example,

P(X:l|Y:1,X7£2):P(X:1|Y:3,X;£2):P(X:1|X7A2):%

2,1
(o) pyix (] 2) = XX

3

1
px(2) =) pxy(2y)=c+0+c=2c= =

y=1
Therefore,
1/20 1 e
1/20 .
pyix(y|2) = ﬁz% ity=3
0 otherwise

E[Y? X =21=) vpyx(y]2) = (1%) % +(3%)

3
EY | X=2=) ypyx(y|2) =1

y=1

1
2

+3-

=5

DO =

=2

DO =

var(Y [ X =2)=E[Y? | X =2] —E[Y | X =2=5-2"=1

(a)

px(D=P(X=1,Y=1)+P(X=1,Y =2) +P(X =1,Y = 3)

=1/12+2/124+1/12=1/3

(b) The solution is a sketch of the following conditional PMF:

1/4,

_ pY,X(y71) _ 1/27

pY\X(y | 1) - px(l) - 1/4,
07

@EY | X=1=3"_yyxy|1)=1-3+2-4+3.1=2

ify=1
ify=2
ify=3
otherwise

(d) Assume that X and Y are independent. Because pxy(3,1) = 0 and py (1) = 1/4,px(3) must equal
zero. This further implies px y(3,2) = 0 and px,y(3,3) = 0. All the remaining probability mass must go
to (X,Y) = (2,2), making pxy(2,2) = 5/12,px(2) = 8/12, and py(2) = 7/12. However, px y(2,2) #
px(2) - py(2), contradicting the assumption; thus X and Y are not independent. A simpler explanation uses
only two X values and two Y values for which all four (X,Y") pairs have specified probabilities. Note that if
X and Y are independent, then px y(1,3)/px,v(1,1) and px,y(2,3)/px,y(2,1) must be equal because they
must both equal py (3)/py (1). This necessary equality does not hold, so X and Y are not independent.

(e) Knowing that X and Y are conditionally independent given B, we must have

pX,Y(la 1) — pX,Y(Zv 1)
pxy(1,2)  pxy(2,2)

since the (X,Y") pairs in the equality are all in B. Thus

DX, (1,2)p ) (2,1) - (2/12)(2/12) B 4 1
prviey - D) QD o)

(f) Since P(B) = 9/12 = 3/4, we normalize to obtain px y|5(2,2) = 25122 = 4/9.
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24. (a) From the joint PMF, there are six (z,y) coordinate pairs with nonzero probabilities of occurring. These
pairs are (1,1),(1,3),(2,1),(2,3),(4,1), and (4,3). The probability of a pair is proportional to the sum of the
squares of the coordinates of the pair, z2 + y?. Because the probability of the entire sample space must equal
1, we have:

(14+1De+ (1+9)c+ A+ e+ (4+9)c+ (16 + e+ (16 + 9)e = 1

: _ 1
Solving for ¢, we get ¢ = =.

(b) There are three sample points for which y < x :

P(Y < X) = P2 1)) + P({(4 D)) + PUAN) = 5 + 52 + 22 = o

(¢c) There are two sample points for which y > x :

P(Y > X)=P({(1,3)}) +P({(2,3)}) = % + % B %

(d) There is only one sample point for which y = x :

P(Y = X) = P{(1,1)}) = =.

72
Notice that, using the above two parts,
47 23 2
P(Y<X)—|—P(Y>X)—|—P(Y_X)_ﬁ+5+5_1

as expected.

(e) There are three sample points for which y = 3 :

P(Y =8) = (L3N + PU2 3N + PULHN = 0 + 0 + 22 = oo

(f) In general, for two discrete random variable X and Y for which a joint PMF is defined, we have

px(@) = Y pxy(zy) and py(y)= > pxy(z,y)

y=—o0 T=—00

In this problem the ranges of X and Y are quite restricted so we can determine the marginal PMFs by
enumeration. For example,

px(2) =P{(2,D}) +P{(2,3)}) = %-

Overall, we get:

18/72, ifx =2, . e
px(z) = 12/72, ifz =4, and py(y) =< 48/72, ify=3
0, otherwise 0, otherwise

(g) In general, the expected value of any discrete random variable X equals

For this problem,

12 1 42
E[X]:l-—+2-—8+4-

72 72 =3

15



25.

and

24 8 7
E[Y]=1- ===
¥] PRI

To compute E[XY], note that px vy (z,y) # px(x)py (y). Therefore, X and Y are not independent and we
cannot assume E[XY] = E[X]E[Y]. Thus, we have

= Z Z zypx,y (2, y)

2 5 17 10 13 25 61
=1 —=4+2 - —=+4 - —=—+3 - —+6- —+12- — = —.
72 + 72 + 72 + 72 + 72 + 729
(h) The variance of a random variable X can be computed as E [X?] — E[X]? or as E [(X — E[X])?]. We use
the second approach here because X and Y take on such limited ranges. We have

var(X):(1—3)2;—2—|—(2—3) ;i + (4 — 3)? ;L;

3
2 2

and
7\? 24 7\?48 8
V)=(1-L1) = B
var(Y) ( 3) 72+(3 3) 729

X and Y are not independent, so we cannot assume var(X +Y) = var(X) 4 var(Y'). The variance of X +Y
will be computed using var(X +Y) = E [(X +Y)?] — (E[X + Y])2. Therefore, we have

5 17 10 13 25 547
E[(X+Y)’]=4- 5+9 5+25 5+16 5+25 5+49 T
7\? 256
(E[X +Y])? = (E[X] +E[Y])? = <3 + 5) =5
Therefore,
547 256 35
X+4Y)="— - ===,
var(X +Y) = 70— == = ¢

(i) There are four (x,y) coordinate pairs in A : (1,1),(2,1),(4,1), and (4,3). Therefore, P(A) = 5(2+5 +
17+ 25) = 23, To find E[X | A] and var(X | A), px|a(z) must be calculated. We have

2/49, ifz=1
5/49, ifx =2

0, otherwise
9 5 42180
EX|Al=15+2 g+ 5="29
5 5 12 694
ElXx2|4] =12. 2 492 42
[X* [ 4] TR T T AT
694 (180> 1606
- 2 _ 2 - _ = —
var(X | A) = E [X | A] (E[X | A]) 49 ( 49 ) 2401

Consider a sequence of six independent rolls of this die, and let X; be the random variable corresponding to
the ¢ th roll.

(a) What is the probability that exactly three of the rolls have result equal to 3 ? Each roll X; can either be a
3 with probability 1/4 or not a 3 with probability 3/4. There are (g) ways of placing the 3’s in the sequence of
six rolls. After we require that a 3 go in each of these spots, which has probability (1/4)%, our only remaining

16



26.

condition is that either a 1 or a 2 go in the other three spots, which has probability (3/4)2. So the probability

of exactly three rolls of 3 in a sequence of six independent rolls is (g) (é—:i)3 (%)3.

(b) What is the probability that the first roll is 1 , given that exactly two of the six rolls have result of 1 ?
The probability of obtaining a 1 on a single roll is 1/2, and the probability of obtaining a 2 or 3 on a single
roll is also 1/2. For the purposes of solving this problem we treat obtaining a 2 or 3 as an equivalent result.
We know that there are (g) ways of rolling exactly two 1’s. Of these (g) ways, exactly (?) = 5 ways result in
a 1 in the first roll, since we can place the remaining 1 in any of the five remaining rolls. The rest of the rolls
must be either 2 or 3 . Thus, the probability that the first roll is a 1 given exactly two rolls had an outcome
of 1is 2

()

(¢) We are now told that exactly three of the rolls resulted in 1 and exactly three resulted in 2. What is the
probability of the sequence 121212 ? We want to find

P(121212)
P( exactly 3 ones and 3 twos )’

P (121212 | exactly three 1’s and three 2’s ) =
Any particular sequence of three 1’s and three 2 ’s will have the same probability: (1/2)3(1/4)3. There are
(g) possible rolls with exactly three 1’s and three 2 ’s. Therefore,

1
P(121212]exactly three 1’s and three 2’s ) = —

6
(3)
(d) Conditioned on the event that at least one roll resulted in 3, find the conditional PMF of the number of

3’s. Let A be the event that at least one roll results in a 3. Then

6
P(A) = 1 — P( no rolls resulted in 3) = 1 — G)

Now let K be the random variable representing the number of 3 ’s in the 6 rolls. The (unconditional) PMF

pi (k) for K is given by e
w0 (3) () (5)

We find the conditional PMF py,4(k | A) using the definition of conditional probability:

P({K = k} N A)
P(A)

prjalk | A) =

Thus we obtain

k 6—k .
a4y { A O @@ 12
0 otherwise.

Note that pg4(0 | A) = 0 because the event {K = 0} and the event A are mutually exclusive. Thus the
probability of their intersection, which appears in the numerator in the definition of the conditional PMF, is
ZErO.

By the definition of conditional probability,

{X=in{X+Y =n})
P(X+Y =n) '

P(X =i|X+Y =n)= 2L

The event {X =i} N{X +Y = n} in the numerator is equivalent to {X =i} N{Y = n — i}. Combining this
with the independence of X and Y,

PUX =i} n{X+Y =n})=P{X =n{Y =n—i}) = P(X =)P(Y =n —i).

In the denominator, P(X+Y = n) can be expanded using the total probability theorem and the independence
of X and Y :

17



n—1
PX+Y=n)=> PX=i)P(X+Y =n|X =i)

i=1
zip(xzi)P(HY:mxzi)

-
=Y PX=i)P(Y=n—i|X =i

=1

:Z_:P(X:i)P(Y:n—i)

Note that we only get non-zero probability for i =1,...,n—1 since X and Y are geometric random variables.
The desired result is obtained by combining the computations above and using the geometric PMF explicitly:

P(X =i)P(Y =n—1)
SIS P(X =i)P(Y =n—i)
__(A=pTpd-—p"'p
S —p)iip(l - p)nitlp

(1-p"

Z?:_ll(l _p)n
(1-p"
(1—p) Yt

nfl’ ? ) ,

P(X=i|X+Y=n)=

27. (a) Let R; be the amount of time Stephen spends at the 4 th red light. R; is a Bernoulli random variable with
p =1/3. The PMF for R; is:

2/3, ifr=0
Pgr(r)=1<1/3, ifr=1
0, otherwise.
The expectation and variance for R; are:
1
E[R]|=p==
[Ri]=p=3
12 2

var (R;) = p(1 —p) = 339

Let Ts be the total length of time of Stephen’s commute in minutes. Then,

5
Ts =18+ R

=1

Ts is a shifted binomial with n = 5 trials and p = 1/3. The PMF for Ty is then:

(L) () ()P itk e {18,19,20, 21,22, 23}
0, otherwise.

PTs (k) = {

The expectation and variance for Tg are:

18



5
E[Ts] =E |18+ Y R
i=1
59
3
5
var (Ts) = var (18 + Z Rl-)
=1
10
9

(b) Let N be the number of red lights Stephen encountered on his commute. Given that Ts < 19, then N =0
or N = 1. The unconditional probability of N = 0 is P(N = 0) = (%)5 The unconditional probability of

N=1isP(N=1)= (?) (%)4 (%)1 To find the conditional expectation, the following conditional PDF is
calculated:

(3)° ;
T, it n =0, i =
A OED 2/%, in=0,
Pyirs<io (n | Ts <19) = —g)(%—)(%}ﬁ7 ifn—1 = 5/7, ifn=1,
(3)"+()(3)(5) 0, otherwise.
0, otherwise,

Therefore,

BN | Ts <19 = >

(c) Given that the last red light encountered by Stephen was the fourth light, Ry = 1 and R; = 0. We are
asked to compute var (N | {Ry = 1} N {R5 = 0}). Therefore,

var (N | {Ry =1} N{Rs =0}) =var (R1 + Ro + R3 + R4+ Rs | {Ry =1} N {R5 = 0})
=var(Ri+ Re+ Rs+1+0|{Rs=1}N{Rs =0})
=var (R + Ro+ Rs + 1)
= var (R; + R2 + R3)
= 3var (R;)

(d) Under the given condition, the discrete uniform law can be used to compute the probability of interest.
There are (g) ways that Stephen can encounter a total of three red lights. There are (g) ways that two out of
the first three lights were red. This leaves one additional red light out of the last two lights and there are (f)

possible ways that this event can occur. Putting it all together,

P (two of first three lights were red | total of three red lights) = -2~ = —

(e) Let Ty be the total length of time of Jon’s commute in minutes. The PMF of Jon’s commute is:

1 .
Py (f) = 41 if £ € {20,21,22,23}
0, otherwise.

(f) Let A be the event that Jon arrives at work in 20 minutes and let B be the event that exactly one person
arrives in 20 minutes.

19



P(ANB)
PA|B)= ————
(415) = Z5
_ P ({Ty = 20} N {Ts # 20})
P ({T; = 20} N {Ts £ 20}) + P ({Ty £ 20} 1 {Ts — 20})
_ P (T = 20) P (s # 20)
P (T;=20)P (Ts # 20) + P (T; # 20) P (Ts = 20)
Jon arrives at work in 20 minutes (or Ty = 20 ) if he does not have to wait for the train at the station (or
X =0). The probability of this event occurring is:

P(T;=20)=P(X =0) = -

Stephen arrives at work in 20 minutes if he encounters 2 red lights. The probability of this event is a binomial
probability:

Thus,

2 /9\3
H-060)®Y)
5 2 3 5 2 3\
I IONORES I(HIONON
(g) The probability of interest is P (T's < T);). This can be calculated using the total probability theorem by
conditioning on the length of Jon’s commute or Jon’s wait at the station. If Jon’s commute is 20 minutes (

or X =0 ), then Stephen can encounter up to 2 red lights to satisfy Ts < T;. Similarly if Jon’s commute is
21 minutes (or X =1 ), Stephen can encounter up to 3 red lights and so on.

P(A|B) =

3
P(Is<T;)=>» P(Is<T;|X=2)P(X =ux)
x=0

SEOHE)”
= 0.9352

An alternative approach follows. We first compute the joint PMF of the commute times of Stephen and Jon
Py, 1, (k,¢). Because of independence, Pr, 1, (k, {) = Pry(k)Pr, (¢). Therefore,

P (TS < TJ) —P( = 18) +P (TS = 19) +P (TS = 20) +P ({TS = 21} N {TJ > 21})
+ P ({Ts = 22} N {Ty > 22}) + P ({Ts = 23} N {T; = 23})

2ONGIONORAIONGRBIGIGRO
REEIORORORE

(h) We express the conditional probability as such:

PHX =3}n{Ts <T,})
P (Ts <Ty)
If Jon waited 3 minutes at the train, his commute was 23 minutes and Stephen’s commute takes at most as

long as Jon’s commute since the longest possible commute for Stephen is 23 minutes. Therefore, the numerator
in the previous expression is equal to P(X = 3) = i. The denominator was computed in the previous part.

P(X=3|Ts<Ty)=

20



29.

4 1
= x=1,2,3,4
px(z) = Z:le,Y(%y) = { 6 OW.
y:
(b) \
1
_ _ 1 Y= 1727374
py(y) = Z:le,Y($7y) = { 6 0.W.

(c) No. One of many counter examples: px (z) does not equal px |y (z | 2).

(d) (continuation to the earlier question) Let event D be the set of all doubles, and let event A be the event
that Alice’s coin toss results in heads. Using the law of total probability:
P(D)=P(D|AP(A)+ P (D | A°) P (A°)
3 4 1 1
X = x

4710474
58
= = 362
g = 3625

(e) Let random variable N be the number of rolls until doubles is rolled. The distribution on N condition on
the set of dice being rolled is a geometric random variable. Using the total expectation theorem, the expected

value of N is:
E[N]=E[N | A|[P(A)+ E[N | A°] P (A°)

311 1
=< XT+ox7
45 4 g
23

— 22 _ 9875

)

(f) The time T until Alice sees a total of 11 heads is the sum of 11 independent and identically distributed
geometric random variables with parameter p = %. Random variable R, the number of tails she sees, is T'—11.

Thus:
E[R]=E[T] - 11

1
4
11
= — =.9167
12

(g) The probability of event A can be found by choosing one of the first 6 outcomes to be a head, the others
tails, and then the outcome of the 7th toss to be head, which is (?)(1 —p)®p?, where p = %. The intersection
of S = s with event A, P(S = sN A), is an event with probability (1 — p)®p? for all values of s(s = 1,...,6).

Consequently, pgja(s) = W is a uniform distribution over the range of s(s =1,...,6).
1
_ 5 S = 1, ey 6
pslA(S) { 0 o.w.

(h) Bob must toss a coin at least 11 times and at most 21 times in order to have either 11 heads or 11 tails.
The intersection of Bob requiring u tosses and 11 of those tosses being heads, is the sum of probability the
(“1_01) sequences that conclude with a head and have a total of 11 heads. The probability of each of those
sequences is (%)u If we consider any sequence in Bob’s experiment with u tosses, since the coin is fair, that
sequence is equally likely to have 11 heads and w — 11 tails or 11 tails and w — 11 heads. Consequently, the
intersection of Bob requiring u tosses and 11 of those tosses being tails is identical to the probability that the

sequence had 11 heads. Summing these two mutually exclusive probabilities which total py(u) :
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u—1 1\u _
pu(u) = { 2( 103 (2) U 101';\;...,21

30. (a) We know that the PDF must integrate to 1 . Therefore we have

00 -1 1
1
/ fz(2)dz = / v(1+2%) = v<z+§z3) = 6y
J —00 J =2 —2
From this we conclude v = 1/6.
(b) To find the CDF, we integrate:
R 0, if z < =2,
Fz(2) :/ fz(t)dt = F(t+3)]7,, if —2<2<1
o 1, if 2> 1
0, if z < =2,
=qt(z+328 44, if —2<2<1,
1, if2>1
31. (a)
P(X <1.5)=®(1.5)
=0.9332
PX<-1)=1-P(X<1)
=1-®(1)
=1-0.8413
= 0.1587.
) Y -1 1
E [T_] = —(E[Y]-1)
Y —1Y Y
var 5 = var | 3
1
= ZvarY
=1
Thus, the distribution of X5 is A/(0,1).
© 1-1 _Y-1 1-1
~1<Y<1)=P(——<——<——
P(-1<Y <1) P<2 < — _2>
= 2(0) - 2(-1)
= 2(0) — (1 - o(1))
= 0.3413

32. We first compute the probability that X is in interval [n,n + 1] for an arbitrary nonnegative n. Then, we will
add the probabilities for all odd positive integer values of n. We could integrate the PDF of X over the given
interval but we will use the CDF here. Using the CDF for the exponential random variable,

Pn<X<n+1)=Fx(n+1)— Fx(n)
_ (1 -~ e—,\(n+1)> —(1- e—)\n)

=e M (1—e?).
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Since the intervals are disjoint, we can sum this probability for all odd integers n to find the probability of

interest:
P({X € [n,n + 1] for some odd n})

= Z e (1—e?)
n odd

(1 _ e*A) Z 67)\(21@-%1)

k=0

oo

(1) )
k=0
o
1—e 22
1
(I—eM(Q+e )

= (1 — e_)‘) e

(1 — e_>‘) e
e

14+e 2

1 :/ f(z)dx = )\/ e~ @/ 10y
—oo 0

33. Solution (a) Since

we obtain - 1
1= = A(100)e /19|  — 100\ A= —
(100)e 0 o 100
Hence the probability that a computer will function between 50 and 150 hours before breaking down is given
by

150 150

1
P{50 < X < 150} = / L ean0gy _ _ o100
s 100

—e M2 732 & 384

50

(b) Slmllarly,
P{X 00 v 1 /100d.’f /100 - 1 ! 633
{ < } /0 1006 c 0 c

In other words, approximately 63.3 percent of the time a computer will fail before registering 100 hours of

e P{2<X<5}:P{2;3<X3_3<5;3}=P{—%<Z<§}
()
o (2)- [ (2)] < amo
v P{X>O}_P{$>¥}_P{Z>—l}
=1-9(-1)
= (1)
~ 8413
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P{X —-3]>6}=P{X>9}+P{X < -3}

-3-3

X-3_ 9-3 X -3
ZP{—>—}—|-P{ <

3 3
=P{Z>2}+P[Z< -2}
=1-®(2) + &(-2)
=21 - 3(2)
= .0456

3

35. Solution (a)
-1 oS
P{X>1Y <1} = / / 2e" e W dxdy
Jo )1

1
:/ 2~ (— e_m|(1)o) dy
0

1
:e_l/ 2e~Wdy
0

=e ! (1 - 6_2)

P{X<Y}= // 2~ "e Y dxdy
(zy):x<y

Ty
= / / 2e‘””e‘2yd:1cdy
o Jo

— / 2e7% (1—e¥)dy

0

26_dey—/ 2e 3 dy
0

S~

[SCI )

W =

P{X <a} :/ / 2¢ e Tdydx
o Jo
— 6_13

)

=1-—ce¢

dx

—a

36. For 0 < x < 1,0 <y <1, we have

~

(z,y)
fy(y)
__ [y
2o fz,y)d
x(2—xz—y)
fol (2 —x —y)dr
z(2—x—y)
2-y/2
6x(2 —x —y)
4—3y

fxyy(|y) =

24

3
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37. We first obtain the conditional density of X, given that Y = y.

38.

39.

f(z,y)
fxy(@|y) =
X|Y( 9) fy(y)
_ e Ve Y Iy
ey foz(l/y)e—m/ydz
— le—z/y
Yy
Hence %
P{X>1|Y =y} = / —e /Vdx
1Y
- _ e—ﬂﬁ/y‘OO
1
— ey

(a) .9838 is found in the 2.1 row and the .04 column of the standard normal table so ¢ = 2.14.

(b) PO0<Z<c¢)=.291= &(c)— P(0) =.2910 = ®(c) — .5 = .2910 = P(c) = .7910 = from the standard
normal table, ¢ = .81.

() P(c<Z)=121=1-P(Z<c)=.121=1—®(c) = 121;»®(c) 879 = ¢ = 1.17.

(d) P(—c < Z < ¢) = B(c) — B(—c) = Bc) — (1 — D(c)) = 2B(c) — 1 = .668 = B(c) = .834 = ¢ = 0.97.
() Pc<|Z))=1—P(Z] < ¢)=1— [®(c) — B(—c)] = 1 — [2B(c) — 1] = 2 — 2B(c) = .016 = B(c) = .992 =
c=241.

(a) Since X is limited to the interval (0,1), F(z) =0 for z <0 and F(z)=1forx > 1. For 0 <z < 1,

x

z) = / fly)dy = / 90y°(1 — y)dy = / (90y° — 90y") dy = 103" — 9y1°} = 1027 — 92°.
o 0 0 .
The graphs of the pdf and cdf of X appear below.
247 | | 7
$ 10 y
/3 i
/ \ & 0.6 ',J'f
2 | = /
| 04 :"
i | | = .//
0 " \ J “ 0.0 —— =3 ‘
) 02 i e e R 10 i 00 0 LR 08 1o J

(b)  F(.5)=10(.5)° — 9(.5)'° = .0107.

(c) P(.25 < X < .5) = F(.5) — F(.25) = .0107 — [10(.25)°
continuous, P(.25 < X < .5) = P(.25 < X < .5) =.0107.

~9(.25)1°] = .0107 — .0000 = .0107. Since X is

(d) The 75" percentile is the value of x for which F(z) = .75 : 102° —92'0 = .75 = x = .9036 using software.
1

(e) B(X)= [ _a- f(x)ds = fol x-9028(1 — x)dw = fol (902 — 9021°) da = 90 — ??x“] =9-N =2 -

.8182.

Similarly, E (X?) = [%_a?- f(z)dz = jg x2
(.8182)% = .0124 and ox = .11134.

(f) wpxo=1(7068,.9295). Thus, P(u—0 < X < pu+ o) = F(.9295) — F(.7068) = .8465 — .1602 = .6863,
and the probability X is more than 1 standard deviation from its mean value equals 1 — .6863 = 3137.

-902%(1 — z)dr = ... = .6818, from which V(X) = .6818—

25



2
40. (a) 1= ffooo flx)dx = f02 kxldr = %””3]0 = % =k =

oolw

a1

144

SRR, ,‘\

= 081

06

15
P latdr = Lo®] T = 1(3)" - 1) = & = 200875,

2
d PX>15)=1- f12_5 3r2dy = %xﬂ L= £(2)® — $(1.5)% = 578125,

41. Let X ~ Poisson(y = 20). (a) P(X < 10) = F(10;20) = .011.
(b) P(X >20)=1—F(20;20) = 1 — 559 = .441.
()
P(10 < X < 20) = F(20;20) — F(9;20) = .559 — .005 = .554
P(10 < X < 20) = F(19;20) — F(10;20) = .470 — .011 = .459
(d)
E(X)=pu =20, so 0 =20 = 4.472. Therefore, P(u — 20 < X < p + 20) =
P(20 — 8.944 < X < 20+8.944) = P(11.056 < X < 28.944) = P(X < 28) — P(X < 11) =
F(28;20) — F(11;20) = .966 — .021 = .945.

42. The probability that 2 heads appear is 1, that 2 tails (no heads) appear is 1 and that 1 head appears is 1.

1 2
Thus the probability of winning $2 is *, of winning $1 is %, and of losing $5 is jil. Hence £ = 2- i +1.4-5.1 =

1 2
—;11 = —0.25. That is, the expected value of the game is minus $0.25 , and so is unfavorable to the player.

43. (i) The probability of winning $5 is 1, of winning $2 is 3, and of winning $1 is §; hence E =5-1+2-2+1-1
2.50, that is, the expected winnings are $2.50.

(ii) If he pays $2.50 to play the game, then the game is fair.

(a) Since f is a density it integrates to 1 and so a + b/3 = 1. In addition 3/5 = E[X] = fol z (a+ ba?) do =
a/2+b/4. Hence, a = 3/5 and b = 6/5.

b) (i) Since

44.

F(z) z/ e fdr=1—e"
0

if follows that

1/2=1—-¢e"" or m=log(2)
(ii) In this case, F(r) = z,0 < z < 2; hence m = 1/2.

45. Let X represent the annual rainfall where X follows a normal distribution with a mean of 40 and a standard
deviation of 4. To find P(X > 50), first compute the z-score. The z-score can be found as follows:

x—p
g
50— 40
T4
—25
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Now observe the following:
P(X >50)=1—-P(Z <2.5)

=1-0.9937903
~ (0.00621

Now to find the probability that in 2 of the next 4 years the rainfall will exceed 50 inches, use the binomial
distribution where p = 0.00621 and ¢ = 1 — p, let Y be a random variable that represents years where the
rainfall exceeds 50 inches and has p = 0.00621.

Using the probability mass function for the binomial distribution, we get the following:

P =2 = (5) w7« (1 -

4
P(Y =2) = (2) (0.00621) x (1 — 0.00621)?
~ 0.00023

So the probability that in 2 of the next 4 years that the region will receive more than 50 inches of annual
rainfall is approximately 0.00023.

46. It is clear that a necessary and sufficient condition for the three segments to form a triangle is that the length
of any one of the segments be less than the sum of the other two. Let x,y be the abscissas of the two points
chosen at random. Then we must have either

1 1
O<x<§<y<1andy—x<§

or

1 1
O<y<§<x<1andx—y<§.

This is precisely the shaded area in the Figure (See class notes). It follows that the required probability is i.

47. The probability of scoring 10,5, 3 or 0 points follows:

£(10) = 1 area of 10 points 1 m(1)? 1
2 areaoftarget 2 7(5)2 50

£(5) = 1 areaof 5 points 1 w(3)2—n(1)? 8
2 area of target 2 m(5)2 50
13) = 1 areaof 3 points 1 7(5)* —7(3)* 16
2 areaof target 2 7(5)2 - 50
1
0) ==
Thus E=10- 55 +5- &5 +3- 40 +0- 5 = 28 = 1.96.
48. (a) The integration of f(x,y) over the whole region is
oo oo 1 1 2
/ / fz,y)dzdy :/ / g(2x—|—3y)daxdy
—00 J —00 0 JO
1 9 =1
2
[
0 =0
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(b) To calculate the probability, we use

11 1
P[(X,Y)GA]—P<O<X<§,Z<Y<§)

/2 1/2 5
= / / —(2z 4 3y)dzdy
14 Jo O

r=1/2
12 /942 6xy / 12 71 3y
— + — dy = — + = |dy
1/4 5) 5 14 \10 5

=0

0
L3y (1,318
T 10|\2 4 4 16/| 160

Il
7 N\
}—llqd
+

[\v]
~

49. (a) By definition,

e’} 1
g($)=/_ f(x,y)dy=/ 10zy°dy

y=1 1

2301:(173:3),0<:c<1,

10

y=z

0o Yy _
h(y) = / f(z,y)dx = / 10zy’de = 5x?y? z;g =5yt 0<y<1.
—oo 0

Now

fly|z)=

f(z,y) 102y 3y?
) = 13—0:13(1—1;3) = 1_$3,0<x<y<1.

(b) Therefore,

1 1 2
3y 8
fly| 2 = 025)dy = / ay=".

1
Ply>z|x=025)= —
< 2‘ ) 12 1—0.25

1/2
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